Home |
Contact |
Publications |
Code |
Videos |
Projects |
Bio |
Press |
Real time people detection combining appearance and depth image spaces using boosted random ferns Abstract - This paper presents a robust and real-time method for people detection in urban and crowed environments. Unlike other conventional methods which either focus on single features or compute multiple and independent classifiers specialized in a particular feature space, the pro- posed approach creates a synergic combination of appearance and depth cues in a unique classifier. The core of our method is a Boosted Random Ferns classifier that selects automatically the most discriminative local binary features for both the appearance and depth image spaces. Based on this classifier, a fast and robust people detector which maintains high detection rates in spite of environmental changes is created. The proposed method has been validated in a challenging RGB-D database of people in urban scenarios and has shown that outperforms state-of- the-art approaches in spite of the difficult environment conditions. As a result, this method is of special interest for real-time robotic applications where people detection is a key matter, such as human-robot interaction or safe navigation of mobile robots for example. |
Link |