bob.ip.SIFT

class bob.ip.SIFT((object)self, (int)height, (int)width, (int)n_octaves, (int)n_scales, (int)octave_min[, (float)sigma_n=0.5[, (float)sigma0=1.6[, (float)contrast_thres=0.03[, (float)edge_thres=10.0[, (float)norm_thres=0.2[, (float)kernel_radius_factor=4.0[, (BorderType)border_type=bob.sp._sp.BorderType.Mirror]]]]]]]) → None :

Bases: Boost.Python.instance

This class allows after configuration the extraction of SIFT descriptors.

Reference: ‘Distinctive Image Features from Scale-Invariant Keypoints’, D. Lowe, International Journal of Computer Vision, 2004

Creates an object that allows the extraction of SIFT descriptors.

__init__( (object)self, (SIFT)other) -> None

__init__((object)self, (int)height, (int)width, (int)n_octaves, (int)n_scales, (int)octave_min[, (float)sigma_n=0.5[, (float)sigma0=1.6[, (float)contrast_thres=0.03[, (float)edge_thres=10.0[, (float)norm_thres=0.2[, (float)kernel_radius_factor=4.0[, (BorderType)border_type=bob.sp._sp.BorderType.Mirror]]]]]]]) → None :

Creates an object that allows the extraction of SIFT descriptors.

__init__( (object)self, (SIFT)other) -> None

Methods

__init__((object)self, (int)height, …) Creates an object that allows the extraction of SIFT descriptors.
compute_descriptor((SIFT)self, (object)src, …) Computes SIFT descriptor for a 2D/grayscale image, at the given keypoints.
get_descriptor_shape((SIFT)self) Returns the shape of a descriptor for a given keypoint
set_sigma0_no_init_smoothing((SIFT)self) Sets sigma0 such that there is not smoothing at the first scale of octave_min.

Attributes

contrast_threshold The contrast threshold used during keypoint detection
conv_border The way the extractor deals with convolution at the boundary of the image when computing the Gaussian scale space.
edge_threshold The edge threshold used during keypoint detection
gaussian_window_size The Gaussian window size for the descriptor
height The height of the images to process
kernel_radius_factor Factor used to determine the kernel radii (size=2*radius+1).
magnif The magnification factor for the descriptor
n_bins The number of bins for the descriptor
n_blocks The number of blocks for the descriptor
n_intervals The number of intervals of the pyramid.
n_octaves The number of octaves of the pyramid
norm_epsilon The epsilon value added during the descriptor normalization
norm_threshold The norm threshold used during descriptor normalization
octave_max The index of the maximum octave (read-only).
octave_min The index of the minimum octave
sigma0 The value sigma0 of the standard deviation for the input image
sigma_n The value sigma_n of the standard deviation for the nominal/initial octave/scale
width The width of the images to process
compute_descriptor((SIFT)self, (object)src, (object)keypoints) → object :

Computes SIFT descriptor for a 2D/grayscale image, at the given keypoints. The dst array will be allocated and returned.

contrast_threshold

The contrast threshold used during keypoint detection

conv_border

The way the extractor deals with convolution at the boundary of the image when computing the Gaussian scale space.

edge_threshold

The edge threshold used during keypoint detection

gaussian_window_size

The Gaussian window size for the descriptor

get_descriptor_shape((SIFT)self) → tuple :

Returns the shape of a descriptor for a given keypoint

height

The height of the images to process

kernel_radius_factor

Factor used to determine the kernel radii (size=2*radius+1). For each Gaussian kernel, the radius is equal to ceil(kernel_radius_factor*sigma_{octave,scale}).

magnif

The magnification factor for the descriptor

n_bins

The number of bins for the descriptor

n_blocks

The number of blocks for the descriptor

n_intervals

The number of intervals of the pyramid. Three additional scales will be computed in practice, as this is required for extracting SIFT features.

n_octaves

The number of octaves of the pyramid

norm_epsilon

The epsilon value added during the descriptor normalization

norm_threshold

The norm threshold used during descriptor normalization

octave_max

The index of the maximum octave (read-only). This is equal to octave_min+n_octaves-1.

octave_min

The index of the minimum octave

set_sigma0_no_init_smoothing((SIFT)self) → None :

Sets sigma0 such that there is not smoothing at the first scale of octave_min.

sigma0

The value sigma0 of the standard deviation for the input image

sigma_n

The value sigma_n of the standard deviation for the nominal/initial octave/scale

width

The width of the images to process