bob.ip.SIFT¶
-
class
bob.ip.SIFT((object)self, (int)height, (int)width, (int)n_octaves, (int)n_scales, (int)octave_min[, (float)sigma_n=0.5[, (float)sigma0=1.6[, (float)contrast_thres=0.03[, (float)edge_thres=10.0[, (float)norm_thres=0.2[, (float)kernel_radius_factor=4.0[, (BorderType)border_type=bob.sp._sp.BorderType.Mirror]]]]]]]) → None :¶ Bases:
Boost.Python.instanceThis class allows after configuration the extraction of SIFT descriptors.
Reference: ‘Distinctive Image Features from Scale-Invariant Keypoints’, D. Lowe, International Journal of Computer Vision, 2004
Creates an object that allows the extraction of SIFT descriptors.
__init__( (object)self, (SIFT)other) -> None
-
__init__((object)self, (int)height, (int)width, (int)n_octaves, (int)n_scales, (int)octave_min[, (float)sigma_n=0.5[, (float)sigma0=1.6[, (float)contrast_thres=0.03[, (float)edge_thres=10.0[, (float)norm_thres=0.2[, (float)kernel_radius_factor=4.0[, (BorderType)border_type=bob.sp._sp.BorderType.Mirror]]]]]]]) → None :¶ Creates an object that allows the extraction of SIFT descriptors.
__init__( (object)self, (SIFT)other) -> None
Methods
__init__((object)self, (int)height, …)Creates an object that allows the extraction of SIFT descriptors. compute_descriptor((SIFT)self, (object)src, …)Computes SIFT descriptor for a 2D/grayscale image, at the given keypoints. get_descriptor_shape((SIFT)self)Returns the shape of a descriptor for a given keypoint set_sigma0_no_init_smoothing((SIFT)self)Sets sigma0 such that there is not smoothing at the first scale of octave_min. Attributes
contrast_thresholdThe contrast threshold used during keypoint detection conv_borderThe way the extractor deals with convolution at the boundary of the image when computing the Gaussian scale space. edge_thresholdThe edge threshold used during keypoint detection gaussian_window_sizeThe Gaussian window size for the descriptor heightThe height of the images to process kernel_radius_factorFactor used to determine the kernel radii (size=2*radius+1). magnifThe magnification factor for the descriptor n_binsThe number of bins for the descriptor n_blocksThe number of blocks for the descriptor n_intervalsThe number of intervals of the pyramid. n_octavesThe number of octaves of the pyramid norm_epsilonThe epsilon value added during the descriptor normalization norm_thresholdThe norm threshold used during descriptor normalization octave_maxThe index of the maximum octave (read-only). octave_minThe index of the minimum octave sigma0The value sigma0 of the standard deviation for the input image sigma_nThe value sigma_n of the standard deviation for the nominal/initial octave/scale widthThe width of the images to process -
compute_descriptor((SIFT)self, (object)src, (object)keypoints) → object :¶ Computes SIFT descriptor for a 2D/grayscale image, at the given keypoints. The dst array will be allocated and returned.
-
contrast_threshold¶ The contrast threshold used during keypoint detection
-
conv_border¶ The way the extractor deals with convolution at the boundary of the image when computing the Gaussian scale space.
-
edge_threshold¶ The edge threshold used during keypoint detection
-
gaussian_window_size¶ The Gaussian window size for the descriptor
-
get_descriptor_shape((SIFT)self) → tuple :¶ Returns the shape of a descriptor for a given keypoint
-
height¶ The height of the images to process
-
kernel_radius_factor¶ Factor used to determine the kernel radii (size=2*radius+1). For each Gaussian kernel, the radius is equal to ceil(kernel_radius_factor*sigma_{octave,scale}).
-
magnif¶ The magnification factor for the descriptor
-
n_bins¶ The number of bins for the descriptor
-
n_blocks¶ The number of blocks for the descriptor
-
n_intervals¶ The number of intervals of the pyramid. Three additional scales will be computed in practice, as this is required for extracting SIFT features.
-
n_octaves¶ The number of octaves of the pyramid
-
norm_epsilon¶ The epsilon value added during the descriptor normalization
-
norm_threshold¶ The norm threshold used during descriptor normalization
-
octave_max¶ The index of the maximum octave (read-only). This is equal to octave_min+n_octaves-1.
-
octave_min¶ The index of the minimum octave
-
set_sigma0_no_init_smoothing((SIFT)self) → None :¶ Sets sigma0 such that there is not smoothing at the first scale of octave_min.
-
sigma0¶ The value sigma0 of the standard deviation for the input image
-
sigma_n¶ The value sigma_n of the standard deviation for the nominal/initial octave/scale
-
width¶ The width of the images to process
-