bob.ip.Gaussian

class bob.ip.Gaussian((object)self[, (int)radius_y=1[, (int)radius_x=1[, (float)sigma_y=1.5811388300841898[, (float)sigma_x=1.5811388300841898[, (BorderType)conv_border=bob.sp._sp.BorderType.Mirror]]]]]) → None :

Bases: Boost.Python.instance

This class allows after configuration to perform gaussian smoothing.

Creates a gaussian smoother.

__init__( (object)self, (Gaussian)other) -> None

__init__((object)self[, (int)radius_y=1[, (int)radius_x=1[, (float)sigma_y=1.5811388300841898[, (float)sigma_x=1.5811388300841898[, (BorderType)conv_border=bob.sp._sp.BorderType.Mirror]]]]]) → None :

Creates a gaussian smoother.

__init__( (object)self, (Gaussian)other) -> None

Methods

__init__((object)self [, (int)radius_y=1 [, …) Creates a gaussian smoother.
reset((Gaussian)self [, (int)radius_y=1 [, …) Resets the parametrization of the Gaussian

Attributes

conv_border The extrapolation method used by the convolution at the border
kernel_x The values of the x-kernel (read only access)
kernel_y The values of the y-kernel (read only access)
radius_x The radius of the Gaussian along the x-axis (size of the kernel=2*radius+1)
radius_y The radius of the Gaussian along the y-axis (size of the kernel=2*radius+1)
sigma_x The variance of the Gaussian along the x-axis
sigma_y The variance of the Gaussian along the y-axis
__call__((Gaussian)self, (object)src, (object)dst) → None :

Smoothes an image (2D/grayscale or color 3D/color). The dst array should have the expected type (numpy.float64) and the same size as the src array.

__call__( (Gaussian)self, (object)src) -> object :
Smoothes an image (2D/grayscale or color 3D/color). The smoothed image is returned as a numpy array.
conv_border

The extrapolation method used by the convolution at the border

kernel_x

The values of the x-kernel (read only access)

kernel_y

The values of the y-kernel (read only access)

radius_x

The radius of the Gaussian along the x-axis (size of the kernel=2*radius+1)

radius_y

The radius of the Gaussian along the y-axis (size of the kernel=2*radius+1)

reset((Gaussian)self[, (int)radius_y=1[, (int)radius_x=1[, (float)sigma_y=1.5811388300841898[, (float)sigma_x=1.5811388300841898[, (BorderType)conv_border=bob.sp._sp.BorderType.Mirror]]]]]) → None :

Resets the parametrization of the Gaussian

sigma_x

The variance of the Gaussian along the x-axis

sigma_y

The variance of the Gaussian along the y-axis