
Logic-Skill Programming: An Optimization-based

Approach to Sequential Skill Planning

Teng Xue1,2, Amirreza Razmjoo1,2, Suhan Shetty1,2, Sylvain Calinon1, 2

1Idiap Research Institute 2École Polytechnique Fédérale de Lausanne (EPFL)

Abstract—Recent advances in robot skill learning have un-
locked the potential to construct task-agnostic skill libraries, facil-
itating the seamless sequencing of multiple simple manipulation
primitives (aka. skills) to tackle significantly more complex tasks.
Nevertheless, determining the optimal sequence for independently
learned skills remains an open problem, particularly when the
objective is given solely in terms of the final geometric config-
uration rather than a symbolic goal. To address this challenge,
we propose Logic-Skill Programming (LSP), an optimization-
based approach that sequences independently learned skills to
solve long-horizon tasks. We formulate a first-order extension
of a mathematical program to optimize the overall cumulative
reward of all skills within a plan, abstracted by the sum of
value functions. To solve such programs, we leverage the use
of tensor train factorization to construct the value function
space, and rely on alternations between symbolic search and
skill value optimization to find the appropriate skill skeleton
and optimal subgoal sequence. Experimental results indicate that
the obtained value functions provide a superior approximation
of cumulative rewards compared to state-of-the-art reinforce-
ment learning methods. Furthermore, we validate LSP in three
manipulation domains, encompassing both prehensile and non-
prehensile primitives. The results demonstrate its capability to
identify the optimal solution over the full logic and geometric
path. The real-robot experiments showcase the effectiveness of
our approach to cope with contact uncertainty and external
disturbances in the real world.

I. INTRODUCTION

Consider the following task: ”A large box is positioned on

the table, next to a wall. The objective is to reorient the box to

a new 6D pose using a single robot manipulator with minimal

control efforts (or maximal rewards). The robot is allowed

to have any interactions with the surroundings.” A potential

solution involves pushing the box until it reaches the wall, then

pivoting against the wall, followed by pulling it to the target.

It is noteworthy that the objective is only given in terms of the

evaluation of the final geometric configuration, and potential

control costs.

Such tasks are quite common in sequential manipulation

scenarios, typically involving the sequencing of multiple ma-

nipulation primitives, such as push, pivot, and pull, to achieve

a long-horizon target with sparse rewards. Solving these

tasks requires reasoning about the appropriate sequence of

primitives and corresponding motion trajectories. This hybrid

structure results in combinatorial complexity, making it ex-

pensive to find a solution. To address this challenge, Mixed-

Integer Programming (MIP) [15] is an intuitive approach that

does not require a careful design of the system model but

relies on branch-and-bound techniques to efficiently prune

Fig. 1: Overview of the proposed approach: Given the evaluation
function Ψ of the final configuration, along with the initial symbolic
state s0 and geometric state x0, the objective of LSP is to find a
solution that can accomplish the task with minimal control costs.
A task-agnostic skill library is pretrained, consisting of N skill
operators A = {a1:N}, along with corresponding value functions
V = {V π1:N } and policies P = {π1:N} in Tensor Train format.
LSP solves this problem by alternating between symbolic search
and skill value optimization for joint logic-geometric reasoning.
Symbols s1:K are used as constraints for skill optimization, while
skill optimization is used to check skeleton feasibility and final
configuration performance, with a feedback reward r informing the
symbolic search. This results in the appropriate skill skeleton a1:K

and subgoal sequence x1T :KT
, which are then combined with the

skill policies π1:K existing in the skill library to actuate the real robot.
Notably, the gray channel with symbolic final state sK is interrupted
because our framework eliminates the need for a symbolic target goal
sT , while such information is typically required in existing sampling-
based sequential skill planning methods.

solutions. While MIP works well with convex optimization

formulations, such as graph of convex sets [16], manipulation

tasks involving interactions with the surroundings usually

violate this assumption. Another approach is to implicitly

model the hybrid system with complementary constraints

[23, 19]. By uncovering the internal structures of different

manipulation primitives, this method eliminates the need for

integer variables in problem formulation, allowing the use of

continuous optimization techniques. However, it often leads to

poor local optima.

A more general approach involves using logic as a combi-



natorial expression of possible manipulation primitives [36].

This approach follows the principles of MIP but extends

the formulation to the first-order logic level, allowing the

utilization of powerful classical AI techniques. This idea is

related to a field known as Task and Motion Planning (TAMP)

[9], where the objective is to find a feasible or optimal plan

for a complicated task given full knowledge of the system

and environments. Various approaches have been proposed

to solve TAMP problems, including PDDLStream [8] and

Logic-Geometric Programming [35]. TAMP methods have

demonstrated high performance in diverse scenarios, such

as construction assembly [11], table rearrangement [24], and

mobile manipulation [43]. However, they often exhibit poor

performance in many realistic scenarios involving model un-

certainty and external disturbances. For instance, considering

the task introduced at the beginning, although we can derive

an offline feasible/optimal trajectory using predefined contact

parameters like friction coefficients and damping parameters,

this trajectory can be totally wrong because we cannot know

exactly the contact model between the robot, objects, and the

environment.

Thanks to the advances in learning-based techniques, it

is now possible to learn a powerful skill policy for each

specific manipulation primitive. The policy can be seen as a

short-horizon model predictive controller (MPC) with a good

terminal cost function, showing robust and reactive behaviors

in the face of model uncertainty and external disturbances.

When compared with methods that require online planning

[41, 12], policy-based methods [33, 31, 4] usually exhibit good

performance in physical manipulation tasks that need to cope

with contact uncertainty.

We can construct a skill library composed of multiple task-

agnostic policies trained independently. This allows for the

iterative augmentation of the skill library in a lifelong manner.

However, sequencing such task-agnostic policies remains an

open problem. Two questions should be considered:

1) Within the library, multiple skills are available. To tackle

an unseen, long-horizon manipulation task, the questions arise:

which skills should be employed, and what is the correct

order?

2) The acquired skills are task-agnostic. Each skill depends

on a specific subgoal to generate the appropriate action given

the current state. How to determine the subgoal sequence given

a skill skeleton?

There has been prior work aimed at addressing these

questions [2, 13, 39]. However, most existing approaches

necessitate a well-defined task planning problem with an ex-

plicit symbolic goal description, followed by sampling-based

methods to check whether the symbol-defined constraints can

be satisfied. This limitation restricts the applicability of such

methods to the tasks mentioned at the beginning. Moreover,

it is worth noting that these tasks are, in fact, optimization

problems rather than constraint satisfaction problems.

To address these issues, we introduce Logic-Skill Program-

ming, an optimization-based approach designed to eliminate

the need for explicit symbolic goal descriptions. It also

provides a notion of global optimality over the full logic-

geometric path. This work draws inspiration from Logic-

Geometric Programming [35] and shares the same philosophy,

with a key distinction that we concentrate on skill policy

planning, rather than motion planning in a fully-known en-

vironment.

Fig. 1 is an overview of our proposed approach. Given the

initial state s0 and x0, along with the evaluation function Ψ
for the final geometric configuration, LSP can generate the

solutions to sequence multiple skills from the task-agnostic

skill library. This problem is formulated as an extended

first-order mathematical program, where first-order symbols

are introduced to constrain the optimization problem. The

objective is to optimize both the overall cumulative reward

and the performance of the final geometric configuration. The

overall cumulative reward is expressed as the sum of all value

functions within the plan, forming a value function space.

While Reinforcement Learning (RL) algorithms have excelled

in tackling highly challenging problems, the approximations

of the obtained value functions lack generalizability to the

entire state space, which is critical in sequential skill planning

for determining the optimal subgoal sequence with maximum

cumulative reward. We therefore propose to use Tensor Train

(TT) to approximate the value function space, which shows

superior approximation capabilities compared to RL methods.

The appropriate skill skeleton and optimal subgoal sequence

are then obtained by alternating between symbolic search and

skill value optimization over the value function space.

We summarize the contributions of this paper as follows:

• We propose to formulate the sequential skill planning

problem as an extended first-order mathematical program,

eliminating the need for symbolic goal description and

enabling to find the optimal solutions rather than only

feasible ones.

• We propose Logic-Skill Programming to address sequen-

tial skill planning tasks by alternating between symbolic

search and skill value optimization.

• We propose to use Tensor Train to approximate the value

function space, aiding in finding the optimal subgoal

sequence with maximum cumulative reward respecting

system dynamics/kinematics.

II. RELATED WORK

A. Skill Learning

Methods such as behavior cloning (BC) [7] involve deep

neural networks learning state-action distributions from offline

datasets. This class of methods heavily relies on the quality

of the provided datasets, lacking exploration in complex

state spaces. An alternative is to consider RL. Thanks to

the exploration-exploitation mechanism, RL algorithms can

actively explore the state space and find a feasible path given

any initial states. However, RL primarily explores the local

state space determined by the exploration metric. Once the

final target is reached, RL usually loses motivation to explore

further to find more optimal solutions.



In this paper, we aim to find global optimality over the

entire (logic and geometric) path. To achieve this, we need to

know the value function accurately over the entire state space.

Notably, both BC and RL methods fall short in providing

this information. This assertion aligns with the motivation of

Approximate Dynamic Programming (ADP), where the goal

is to approximate the optimal value function for the entire

state space. However, this objective is challenging due to the

expensive storage and computation involved in solving the

dynamic programming algorithms such as value iteration. We

believe this challenge explains why existing literature primar-

ily focuses on feasibility rather than pursuing optimality in

sequential skill planning. Recently, Shetty et al. [31] proposed

the use of Tensor Train for ADP and performed well in several

hybrid control benchmarks. We find it promising to extend

this method to learning manipulation skills, leveraging its

advantages for accurate value function approximation across

the entire state space for optimal sequential skill planning.

B. Hybrid Long-horizon Planning

Robot manipulation is typically characterized by hybrid

aspects, such as contact modes (sticking/sliding) and manip-

ulation primitives (pushing/pivoting). This hybrid structure

poses significant challenges for gradient-based optimization

techniques. To address this issue, one class of methods uses

MIP [15]. MIP involves both discrete and continuous vari-

ables in optimization problems and relies on Branch-and-

Bound techniques to efficiently search for optimal solutions

by pruning undesirable ones. It performs well if the origi-

nal problem can be reformulated as combinations of several

convex optimization sub-problems. However, manipulation

tasks are usually challenging to convexify. Another well-

studied method is Mathematical Program with Complementary

Constraints (MPCC), which eliminates integer variables by

adding complementary constraints on the decision variables.

Subsequently, augmented Lagrangian techniques are employed

to solve constrained optimization problems. This class of

methods has demonstrated excellent performance in legged

robot locomotion [23] and planar manipulation tasks [19].

However, the added constraints often render the problem more

fragile and prone to getting stuck in poor local optima.

Another promising line of research is Task and Motion Plan-

ning (TAMP) [9]. It adopts the concept of MIP but replaces

integers with symbols, enabling the utilization of powerful

planning tools from the classical AI field. Existing methods in

TAMP can be categorized into two branches: sampling-based

and optimization-based methods. The sampling-based methods

[32, 8] usually assume a symbolic goal description and rely

on a high-level task planner to find a feasible action skeleton.

These methods often introduce predicates to represent geomet-

ric properties at a symbolic level and aim to identify correct

symbolic abstractions of geometries, allowing reasoning solely

at the symbolic level. However, finding the right abstractions

can be non-trivial. Conversely, optimization-based approaches

[35, 42] aim to solve problems at the geometric level, treating

symbolic logic as constraints in mathematical programming.

While these methods can be less efficient than sampling-

based ones, they can handle arbitrary objectives specified only

in terms of an evaluation function for the final geometric

configuration. Moreover, they provide a notion of global

optimality over the entire logic and geometric path. This

philosophy has strongly influenced our work, inspiring the

removal of symbolic goals and the pursuit of optimal solutions

for sequential skill planning.

In general, TAMP performs well across various domains

[11, 24, 43]. However, its reliance on full knowledge of the

planning domain and dynamics model limits its applicability

in realistic environments. For instance, modeling the contact

or interaction between the robot and the environment is often

impossible, leading to poor performance of offline planned

trajectories in online setups. One potential solution to this

issue could be the use of model predictive control for receding

horizon planning [37]. Nevertheless, this approach may result

in somewhat short-sighted behavior, and the intrinsic combi-

natorial structure also makes it expensive in terms of online

planning. The weaknesses of TAMP highlight the importance

of leveraging learned skill policies to address uncertainties

and disturbances in the real world, particularly those involving

physical contact.

C. Sequential Skill Planning

Prior works that focus on sequential skill planning typically

adopt the options framework [34], where a high-level policy is

trained to sequence low-level skills toward the final goals. For

instance, Xu et al. [40] proposed learning a skill proposal net-

work as the high-level policy and utilizes learned skill-centric

affordances (value functions) to assess the feasibility of the

proposed skill skeleton. Similarly, Shah et al. [29] suggested

using the value functions of low-level skills as the state space

to represent the symbolic skill affordance. This representation

is then utilized to train an upper-level RL policy toward

long-horizon goals. Although such methods have demonstrated

the ability to solve long-horizon tasks, the resulting policies

are typically task-specific and exhibit poor generalization on

unseen tasks. Moreover, we believe the capabilities of value

function has not been fully explored by [29, 40]. Instead of

using the value function space symbolically, we regard it as

an abstraction of cumulative reward, taking into account the

system kinematics/dynamics in geometric level. Subsequently,

we leverage it to identify the optimal subgoal sequence that

results in the maximum cumulative reward of the full path.

To enhance generalization ability, several recent works rely

on symbolic planning to sequence task-agnostic skills. In Agia

et al. [2], the product of Q-functions is maximized to ensure

the joint success of all skills sequenced in a plan, with the

skill skeleton given by a high-level task planner. Similarly,

in Huang et al. [13], a symbolic planner is used to sequence

imitation learning policies, by leveraging continuous relaxation

to improve symbolic grounding success. In Wu et al. [39],

a repertoire of visuomotor skills is learned through human-

provided example images. The pre-conditions and effects of

each action are represented by images, enabling the verifi-



cation of the feasibility of the skill skeleton provided by a

high-level symbolic planner. The key is the formulation of

a constraint satisfaction problem where the effects of the pa-

rameterized skill primitive satisfy the preconditions of the next

skill in the plan skeleton. The plan skeleton is either predefined

[18] or obtained through PDDL planners [2], requiring an

explicit symbolic goal description. None of these methods

aims to optimize over a final configuration given only by an

objective function, limiting their ability to solve the problem

mentioned at the beginning.

Therefore, we are motivated to propose a method that

eliminates the need for a symbolic goal description while

ensuring the maximum cumulative reward of the obtained skill

skeleton and motion trajectories. This work aligns with LGP

[35], except that we plan over skills rather than motions, as we

believe skills are more applicable in realistic environments.

III. BACKGROUND

A. Tensor Train for Function Approximation

A multivariate function f(x1, . . . , xd) over a rectangular

domain D can be approximated by a tensor F , where each

element in the tensor represents the value of the function given

the discretized inputs. The value of function f at any point in

the domain can then be approximated by interpolating among

the elements of the tensor F .

Due to storage limitations, representing a high-dimensional

tensor is challenging. Tensor Train (TT) decomposition [21]

was proposed to solve this problem by representing the tensor

using a set of third-order tensors called cores. TT-Cross [20,

27] is a widely used technique to approximate a function in TT

format. For more introductions about these techniques, readers

may refer to [31] for a detailed review.

B. Logic-Geometric Program

Logic-geometric Programming was proposed by [35] to

integrate first-order logic into a mathematical program for

addressing combined Task and Motion Planning (TAMP)

problems. The general formulation is as follows: Given a logic

L, a knowledge base K ∈ L, and an objective function l(x)
over geometric configurations x ∈ X , the logic-geometric

program can be expressed as:

min
x,κ

l(x) s.t. κ |= K, g(x, κ) ≤ 0, h(x, κ) = 0, (1)

where |= represents logical implication, indicating that K is

satisfied once the logical statement κ is True. This defines the

associated equality and inequality constraints: g(x, κ) ≤ 0 and

h(x, κ) = 0.

Our formulation can be viewed as a special case of logic-

geometric program, where the objective function is the total

cumulative reward and the evaluation of the final configuration,

and the knowledge base is the selected skill skeleton.

IV. METHODOLOGY

A. Problem Formulation

Our objective is to address long-horizon manipulation tasks

by sequentially executing a series of skills included in a skill

library P = {π1, π2, . . . , πN}. To ensure that the learned

skills can be sequenced in an arbitrary manner and generalized

to any long-horizon tasks, the skills should be task-agnostic,

as also described in Agia et al. [2]. This implies that the

learned policy is trained independently, with its own skill-

centric parameters. Each skill domain can be modeled by a

Markov Decision Process (MDP)

Mn = (Xn,Un, Tn,Rn), (2)

where Xn is the state space, Un is the action space,

Tn(x
′

n|xn, un) is the transition model, Rn(xn, un) is the

reward function given current state and action.

The full K-length long-horizon domain is the union of

{M1,M2, . . . ,MK}, where each time segment corresponds

to a single skill policy. It is specified as

M = (M1:K ,X ,Φ1:K ,Γ1:K), (3)

where X is the full state space of the long-horizon domain,

Φ1:K : Xk → X is a function that maps the policy state space

to the full state space, and Γ1:K : X → Xk is a function that

extracts the policy state from the full state. Note that the state

spaces of different skills usually have different dimensions

and structures. Taking pushing and pivoting as examples, they

are planar manipulation primitives defined in horizontal and

vertical planes, respectively, affecting different elements of

the object pose after execution. The long-horizon state space

serves as a bridge, transmitting the local state changes from

the previous skill to the subsequent one.

After acquiring these task-agnostic policies, our goal is to

determine the optimal skill skeleton and subgoal sequence,

given the evaluation function Ψ of the final configuration. Each

skill πk(u|x) is trained to maximize the cumulative reward

given the current state x. Therefore, finding the optimal skill

sequence aims to maximize the overall cumulative reward for

the complete skill sequence a1:K and the evaluation of the

final configuration Ψ(xKT
):

max
x,a1:K

K∑

k=1

Eπk

[
∞∑

t=0

γtRkt

]
+Ψ(xKT

). (4)

Here, Rkt
denotes the reward of skill ak at time t. However,

directly optimizing over the infinite full horizon is impossible.

Considering that the value function is defined to approximate

the cumulative reward in dynamic programming:

V πk(x) = Eπk

[
∞∑

t=0

γtRkt
(xkt

, πk(xkt
)) | xk0

= x

]
, (5)

and the objective of each policy is to find an action from the

action space that can maximize the cumulative reward from

current state:

Qπk(x,u) = Eπk

[
∞∑

t=0

γtRkt
(xkt

,ukt
) | xk0

=x,uk0
=u

]
,

πk(x) = argmax
u

Qπk(x,u). (6)



Sequential skill planning problem can be formulated as

maximizing the sum of value functions, along with the evalu-

ation function Ψ of the final configuration, incorporating first-

order logic as constraints:

max
x,a1:K ,s1:K

K∑

k=1

V πk(xk0
) + Ψ(xKT

)

s.t. sk ∈ succ(sk−1, ak),x10 = x0,

hpath(xkt
, πk(xkt

)|sk) = 0,

gpath(xkt
, πk(xkt

)|sk) ≤ 0,

hswitch(xkT
|ak+1, sk) = 0,

gswitch(xkT
|ak+1, sk) ≤ 0,

xkt
= Φk(xkt

|ak),

xk0
= Γk(xk0

,xkT
|ak),

(7)

where xk0
and xkT

are the initial and final configuration of

skill operator ak in the long-horizon domain X . The goal

configuration of ak is identical to the initial configuration

of ak+1, namely x(k+1)0 = xkT
. The initial state of ak

within the skill domain Xk, denoted as xk0
, is computed using

xk0
and xkT

. V πk(xk0
) therefore represents the cumulative

reward from xk0
to xkT

in Xk. Φk and Γk are the mapping

functions between long-horizon domain X and skill domain

Xk. Thanks to Γk, given new initializations and targets, there

is no need to retrain new value functions. The definition of

Γk is outlined in Sec. V-A. s0 and x0 denote the initial

symbolic state and geometric configuration, respectively. hpath

and gpath indicate the constraints on the path xkt
given current

symbolic state sk. Such constraints are addressed by the skill

policies πk in each skill domain. hswitch and gswitch express the

transition consistency of configuration xkT
with the following

skill operator ak+1. For example, to pivot an object against

the wall, the object should be well-positioned in contact

with the wall after the previous action. These constraints

specify the degrees of freedom in the system configurations

that can be actuated under the symbolic state sk, thereby

effectively reducing the number of decision variables in xkT

and streamlining the optimization process. For instance, an

object marked as non-graspable and onTable can only

be manipulated through push or pull, with actuation in

the dimensions of x, y and yall. Conversely, if the object

is marked as atWall, it can be actuated by pivot, with

changes in roll or pitch.

The value functions of all skills a1:K collectively constitute

a value function space, offering insights into optimal control

for sequentially executed skills, while considering system dy-

namics and kinematics. By optimizing over it, we can identify

the subgoal sequence that maximizes the cumulative reward

while satisfying system constraints. For instance, as depicted

in Fig. 4, the value function space can inform the planner

which configuration along the table edge is more dynamically

optimal, especially considering the under-actuated pushing

dynamics.

We assume the initial geometric configuration x0 is given,

along with an initial symbolic state s0 ∈ L. The sym-

bolic states can be transited through the skill operator ak as

sk = succ(ak, sk−1). The existing skill planning frameworks

typically require an explicit symbolic goal target sT |= G,

while our method eliminates this requirement by considering

only the evaluation Ψ of the final geometric configuration.

B. Logic-Skill Programming

To solve Eq. (7), we propose an approach that alternates

between searching for symbolic skills and optimizing the

value functions. The role of symbolic search is to define the

optimization constraints, while skill value optimization checks

the skeleton feasibility and evaluates the final configuration.

Additionally, our method, instead of only seeking feasible

solutions, aims to find the optimal solution that maximizes

the overall cumulative reward while achieving the final target.

1) Level 1: Symbolic Search: We use Planning Domain

Definition Language (PDDL) [1] to describe the task domain

and then utilize Monte Carlo Tree Search (MCTS) to search

for the appropriate skill sequence a1:K from the skill library.

The preconditions and effects of each skill form a rule-based

representation of symbolic transitions sk = succ(sk−1, ak),
serving as the forward model for symbolic search. In each it-

eration, MCTS relies on the Upper Confidence Bound (UCB1)

[38] to select the node:

UCB1(sk) =
wsk

vsk
+ CE

√
2 ln(vsp

k
)

vsk
, (8)

where vsk represents the number of visits on symbolic state

sk, and wsk indicates the total accumulated reward obtained

through state sk. vsp
k

denotes the number of visits on the

parent node of sk. CE is a constant to balance exploitation

and exploration.

If no child node is found in the current branch of the

search tree, the branch will expand and simulate until it either

reaches the target or surpasses the maximum length. Since our

formulation does not have a symbolic goal, we rely on the

skill value optimization process (Sec. IV-B2) to evaluate the

performance of the final geometric configuration. A reward r
will be backpropagated through the branch, depending on the

simulation result. This iterative process refines the search tree,

focusing on promising branches and ultimately converging

towards an optimal decision. It is important to note that the

sequence length (K in Eq. (7)) is purely unknown before

symbolic search, allowing diverse sequence lengths for the

same target configuration. By applying a higher CE in the

UCB1 formula, MCTS can return multiple solutions. For

example, as shown in Fig. 2b, if we want to grasp the

cube that is only graspable from the lateral side, multiple

symbolic sequences can be found by symbolic search. One

can be push-pick, pushing the cube to the edge and then

grasping it from the table side, while another solution can

be push-pivot-pull-pick. Given multiple solutions,

we can either choose the most robust one before execution

using domain knowledge, or switch between solutions during

execution. This will be further studied in the future to fully

exploit the advantage of multiple solutions.



2) Level 2: Skill Value Optimization: The symbolic skill

skeleton can only express the feasibility in symbolic level. It

has to be verified by Eq. (7) to evaluate the final configuration

while satisfying the constraints. This verification is particularly

crucial in our work, since the objective is solely defined by an

evaluation function Ψ of the final configuration. Additionally,

since the sequenced skills are task-agnostic, finding the sub-

goal of each skill is crucial for the skill policy to reason about

where to go given the current state. All of these considerations

highlight the crucial necessity of solving Eq. (7).

The first step involves obtaining the value functions that can

accurately approximate the cumulative reward in each skill

domain. To achieve this, our approach utilizes Tensor Train

for value function approximation and skill policy learning,

based on an algorithm called Generalized Policy Iteration

using Tensor Train (TTPI) [31]. It is an ADP method that aims

to approximate the value function throughout the entire state

space. TTPI has demonstrated great performance in hybrid

control scenarios in [31], where the value function is used to

compute the advantage function for policy retrieval. In this

work, we apply TTPI to construct the value function space

for skill sequencing.

After obtaining the optimal value functions for different ma-

nipulation skills, we can solve Eq. (7) conditioning on the skill

skeleton generated from the symbolic search level. The result-

ing subgoals x1T :KT
should satisfy both the path constraints

and the switch constraints. The switch constraints hswitch

and gswitch dictate that xkT
must lie within the intersection

space of two adjacent skill domains, Xk and Xk+1, ensuring

configuration consistency. The path constraints hpath and gpath

are addressed by the skill policies in each skill domain. For

example, to verify whether the subgoal xkT
can be achieved

while respecting path constraints, the skill policy πk should

be executed in domain Xk given initial state xk0
. We assume

that the difference between the model parameters used for skill

policy learning and those in the real world is modest. Thanks to

the receding-horizon mechanism during policy execution, the

skill policy can achieve the target despite model uncertainties

and disturbances, thereby naturally satisfying hpath and gpath.

This assumption is sensible, aligning with the objective of

obtaining a powerful policy in the skill learning community

and supported by the robust performance of learned task-

specific policies in existing literature [17, 31, 4]. The focus of

our paper is then more about how to sequence multiple skills

to accomplish a much more complicated task. Additionally,

if this assumption does not hold, we can still use the learned

skill policies and value functions to find the feasible solution

set and select the optimal one that maximizes the objective

function in Eq. (7).

To design an appropriate optimization technique, it is essen-

tial to note that both discrete and continuous variables may be

involved in this problem. For instance, in the task mentioned

at the beginning, we have to rely on pivoting against the wall

to change the roll or pitch angle of the box. This requires

one face of the box to be parallel to the wall. In other words,

the yall angle of the box has to be in [−π,−π/2, 0, π/2]

after pushing. Moreover, the objective function can be in any

form, either convex or non-convex, depending on the value

functions of selected skills. All of these factors pose signifi-

cant challenges for optimization techniques. In this work, we

employ the Cross-Entropy Method (CEM) [26, 6] with mixed

distribution, namely CEM-MD, as the optimization technique.

It can handle mixed-integer programming by using Gaussian

distribution and categorical distribution for continuous and

discrete variables, respectively. The distributions are iteratively

updated towards the fraction of the population with higher

objective scores until converging to the best solution. The

pseudocode of CEM-MD is shown in Alg. 1. Note that the

C samples in each iteration are generated in batch (lines 5-

10) for fast computation.

Algorithm 1 CEM-MD: Cross-Entropy Method with Mixed

Distribution

1: Input: Initial mean µ, covariance matrix Σ for continuous

variables, initial probability vector p for discrete variables,

population size C, elite fraction p, maximum iterations

H , number of categories Kc, skill sequence a1:K , Initial

configuration x0, evaluation function Ψ
2: Output: Subgoal sequence x

∗, cumulative reward: J∗

3: Initialize h← 0
4: while h < H do

5: for i = 1 to C do

6: Sample continuous variables: xci ∼ N (µ,Σ)
7: Sample discrete variables: xdi ∼ Categorical(p)
8: Combine: xi = (xci ,xdi)
9: Evaluate the samples: Ji ← l(xi, a1:K ,x0,Ψ)

▷ objective function in Eq. (7)

10: end for

11: Select the top p solutions (elite set):

{x̂1, x̂2, . . . , x̂pC}
12: Update the mean and covariance for continuous vari-

ables:

µ←
1

pC

pC∑

i=1

x̂c,i

13: Update the probability vector for discrete variables:

14: for kc = 1 to Kc do

pelitekc
=

count(x̂d,kc
)

pC

15: end for

p← pelite

16: h← h+ 1
17: end while

18: x
∗

c ← N (µ,Σ) and x
∗

d ← Categorical(p)
19: x

∗ = (x∗

c ,x
∗

d), J
∗ ← l(x∗, a1:K ,x0,Ψ)

20: Output x∗ and J∗

Overall, our proposed approach is to alternate between

symbolic search and skill value optimization. The symbolic

search is achieved by MCTS, with the obtained skill skele-



ton as the constraints for skill value optimization. The skill

value optimization is achieved by CEM-MD, with its results

to inform symbolic search. The values of visited nodes in

the search tree will be updated, initiating a new iteration.

Given an evaluation function Ψ of the final configuration, this

framework can return multiple solutions. The pseudocode of

our Logic-Skill Programming method is shown in Alg. 2.

Algorithm 2 LSP: Logic-Skill Programming

1: Input: Initial configuration x0, evaluation function Ψ, ini-

tial symbolic state s0, maximum iterations H̃ , maximum

number of solutions Ñs

2: Output: Skill skeleton a1:K , Subgoal sequence x1T :KT

3: Initialize h ← 0, Ns ← 0, Value Set: Ov ← ∅,
Solution Set: Os ← ∅

4: while h < H̃ do

5: Symbolic search: a1:K = MCTS(s0)
6: Skill value optimization:

7: x1T :KT
, J = CEM-MD(a1:K ,x0,Ψ)

8: if solved then

9: Ns ← Ns + 1
10: Ov ← Ov ∪ (J)
11: Os ← Os ∪ (a1:K ,x1T :KT

)
12: end if

13: if Ns ≥ Ñs then

14: break
15: end if

16: h← h+ 1
17: end while

18: Output Os

V. EXPERIMENTS

In this section, we compare our method with state-of-the-

art baselines, in terms of policy learning, subgoal optimization,

and sequential skill planning.

A. Evaluation on Skill Policy Learning

To evaluate the skill policies and their corresponding value

functions, we initially construct a skill library using different

skill learning methods. These methods include TTPI and two

state-of-the-art RL methods: Soft Actor-Critic (SAC) [10] and

Proximal Policy Optimization (PPO) [28].

The skill library encompasses five manipulation skills: push-

ing, pivoting, pulling, picking, and placing, each characterized

by unique state and action spaces. Specifically, pushing, piv-

oting and pulling are planar manipulation primitives.

1) Push: The state is characterized by (po, θo,pr, fc),
while the action is denoted by (vr, fn). Here, (po, θo) ∈
SE(2) denotes the object’s pose in the world frame. pr

and vr represent the position and velocity of the robot

end-effector in the object frame. We assume that the ob-

ject has a rectangular shape (common in industry), where

fc ∈ 0, 1, 2, 3 represents the current contact surface and

fn denotes the next contact surface. Thus, the system

encompasses a total of 6 states and 3 control variables,

comprising both continuous and discrete variables.

2) Pivot: The pivoting domain features a goal-augmented

state (β, β̃), where β is the current rotation angle of

the object in the gravity plane, and β̃ is the desired

angle. The control input is β̇, which denotes the angular

velocity of the robot end-effector..

3) Pull: The state is defined as (po, θo) ∈ SE(2), repre-

senting the object’s position and orientation in a planar

plane. The control input is (ṗo, θ̇o), denoting the trans-

lational and angular velocities of the robot end-effector.

4) Pick: In this domain, the state is defined as

(x, y, z, α, β, θ) ∈ SE(3), representing the pose of

the robot end-effector, while the control input is the

Cartesian velocity of the end-effector, (ẋ, ẏ, ż, α̇, β̇, θ̇) ∈
SE(3). Without loss of generality, we assume that the

object to be picked is located at (0, 0, 0, 0, 0, 0).
5) Place: This domain shares the same state and action

spaces as the Pick domain.

We define the general reward for skill learning as:

r = −1× (cp + ρ× co + 0.01× ca + 0.1× cf ), (9)

with

cp = ∥xp − x
des
p
∥/lp, co = ∥xo − x

des
o
∥/lo,

ca = ∥u∥, cf = 1− δ(fc − fn),
(10)

where xp and xo represent the current position and orientation

of the system in each skill domain, while x
des
p and x

des
o denote

the target position and orientation. We set the state space to

be within [−0.5m, 0.5m] for position elements, and [−π, π]
for orientation elements. lp and lo are therefore set to 0.5 and

π respectively to normalize the position error and orientation

error. ρ is a hyperparameter used to balance position and

orientation errors. Due to the underactuated nature of pushing

dynamics, we set ρ = 0.5 in practice. For other skills, ρ is

set to 1. u represents the control inputs of each skill domain.

cf is a specialized term unique to the pushing domain, used

to penalize face switching during pushing. Here, δ(fc − fn)
returns 1 when fc = fn (indicating no face switching),

otherwise, it returns 0.

Notably, the skill policies learned for push, pull, pick and

place are in a regulated manner, with the target state x
des set as

0. In terms of pivoting, the reward function does not include

a positional term. In the orientation term, xo is defined as β,

and x
des
o

is defined as β̃. Given new initial and target states in

the long-horizon domain, along with the skill operator ak, the

skill-specific state can be computed as xk0
= Γk(xk0

,xkT
|ak)

(as shown in Eq. (7)). For push, pull, pick and place, the

domain mapping function Γk is defined as:

Γk(xk0
,xkT

) = φk(xk0
)− φk(xkT

), (11)

where φk is a dimension reduction function that selects skill-

specific dimensions from the long-horizon state. In the case

of pivot, the skill is acquired through goal-augmented policy

learning, achieved by augmenting the state as (β, β̃). This



(a) Non-Prehensile Manipulation domain (b) Partly-Prehensile Manipulation domain (c) Prehensile Manipulation domain

Fig. 2: Three sequential manipulation domains, including both prehensile and non-prehensile manipulation primitives. The transparent object
represents the final target configuration in each domain.

augmented state is the concatenation of the current rotation

angle φpivot(xk0
) with the desired angle φpivot(xkT

). Γpivot is

therefore defined as:

Γpivot(xk0
,xkT

) = Concat(φpivot(xk0
), φpivot(xkT

)). (12)

The obtained xk0
can then be directly fed into V πk without

the need to retrain new skill policies and value functions.

As for another domain mapping function Φk : Xk → X
which maps skill-specific state to long-horizon state, it is

defined as a function that updates the value of skill-specific

dimensions in the long-horizon state based on the skill-specific

state.

Notably, considering that SAC and PPO are not able to

handle hybrid action space, we exclude fc and fn for a fair

comparison of skill learning performance in this subsection.

For both PPO and SAC, our primary implementation relies

on Stable-Baselines3 [25], utilizing a Multilayer Perceptron

(MLP) architecture with dimensions of 32× 32 as the policy

network. We set the discount factor to 0.99 and the learning

rate to 0.001, while configuring the task horizon to 104. In

TTPI, we establish the accuracy threshold for TT-cross as ϵ =
10−3 and set the maximum rank rmax to 102.

The obtained policies are then evaluated by comparing

the success rates across 1000 initial states in skill domains.

We define a successful task as achieving a position error of

less than 0.03cm and an orientation error of less than 15◦.

Table I reveals that all the policies can nearly reach the final

targets, demonstrating the proficiency of the learned policies in

accomplishing individual manipulation tasks. However, rather

than focusing solely on having skills for each specific task,

we are also concerned with finding the optimal trajectory with

the maximum cumulative reward for the sequenced skills. To

achieve this, an accurate value function is required to inform

which state in the intersection space between two adjacent

skills leads to the maximum cumulative reward. Therefore,

we examine whether the value functions can offer the same

guidance as the cumulative reward given two states, shown as

value prediction in Table I. The metric is to compare whether

V πk(x1) − V πk(x2) has the same direction as Rπk
c (x1) −

Rπk
c (x2), where Rπk

c (x) is the cumulative reward, defined as

Rπk
c (x) =

∞∑

t=0

γtRkt
(xkt

, πk(xkt
)), s.t. xk0

= x. (13)

We randomly selected 1000 state pairs in the state domain.

The value function of TTPI demonstrates superior prediction

performance compared to SAC and PPO. This indicates that

value functions in TT format offer better accuracy in ap-

proximating the cumulative reward, which can inform which

state in the state domain is more dynamically optimal given

current policy. This observation aligns with our motivation,

emphasizing that typical RL methods approximate the value

function primarily within a local space and the policy retrieval

is often sub-optimal due to gradient-based optimization. In

contrast, TTPI, as an ADP method, aims to approximate the

value function across the entire state space. This feature is

advantageous in our sequential skill planning framework for

identifying the subgoal for each skill, which can be anywhere

within the skill-specific state space.

B. Evaluation on Skill Value Optimization

Table I illustrates that the acquired skills are successful in

accomplishing each specific manipulation task. However, to

achieve a long-horizon task where only the evaluation function

Ψ of final configuration is given, finding the subgoal for

each skill is important. This necessitates a good optimization

technique capable of finding the optimal solution based on the

given objective function.

Three different long-horizon domains are used to validate

our method, involving both non-prehensile and prehensile

manipulation primitives, as shown in Fig. 2. The simulation

environments are built using PyBullet [5] and the AIRobot

library [3].

a) Non-Prehensile Manipulation (NPM): As depicted in

Fig. 2a, this domain involves objects that cannot be grasped.

The objective is to manipulate the box within the 3D world

by leveraging multiple non-prehensile planar manipulation



Table I: Comparative Analysis of Skill Policy Performance and Value Function Precision

TTPI SAC PPO
success rate value prediction time (min) success rate value prediction time (min) success rate value prediction time (min)

pushing 1.0 0.85 5.6 0.83 0.63 36.3 0.95 0.61 44.8
pivoting 1.0 0.94 0.9 1.0 0.51 16.0 1.0 0.68 8.7
pulling 1.0 0.97 1.1 1.0 0.84 16.5 1.0 0.72 10.7
pick/place 1.0 0.93 1.67 0.98 0.64 33.6 1.0 0.66 24.6

Table II: Comparison of Computation Error and Time for Skill Value Optimization

TTGO Shooting CEM-MD
error approximation time (s) inference time (s) error time (s) error time (s)

NPM 0.03± 0.00 0.48± 0.21 0.003± 0.00 0.35± 0.01 0.01± 0.00 0.02± 0.01 0.06± 0.01
PPM 0.12± 0.01 3.90± 0.22 0.004± 0.00 0.59± 0.01 0.02± 0.00 0.05± 0.01 0.09± 0.01
PM 0.12± 0.01 20.28± 5.23 0.01± 0.01 0.75± 0.27 0.01± 0.00 0.03± 0.01 0.10± 0.01

(a) Non-Prehensile Manipulation (b) Partly-Prehensile Manipulation (c) Prehensile Manipulation

Fig. 3: The action skeletons obtained by LSP for three domains. The dot point denotes the start of the skill sequence. Each color represents
one solution, with black lines indicating the common shared tunnel. The red star illustrates the end of the skill skeleton.

Table III: Comparison of Computation Time and Solution Quality for Sequential Skill Planning

Computation Time (s) [w/ sym. goal] Computation Time (s) [w/o sym. goal] Cumulative Reward Sequence Length
LSP STAP LSP STAP LSP STAP

NPM 0.14± 0.23 0.06± 0.03 0.27± 0.15 NA 3.0± 0 2.4± 1.57 3.0± 0
PPM 0.17± 0.1 0.08± 0.02 0.22± 0.13 NA 2.9± 0.7 1.88± 1.01 2.9± 0.7
PM 0.25± 0.15 0.21± 0.02 0.41± 0.02 NA 5.0± 0 3.28± 0.62 5.0± 0

primitives and establishing contacts with the surroundings to

achieve the final 6D pose. This task can also be seen as a

special case of in-hand manipulation, where the robot and the

wall act as active and passive ”fingers”, respectively.

b) Partly-Prehensile Manipulation (PPM): As shown in

Fig. 2b, this domain involves objects that can only be grasped

in specific directions. The goal in this domain is to manipulate

the 6D pose of the cube, including the z direction. Therefore,

the robot must strategically decide how to pick up the object

in the end. This domain requires the robot to reason about

physical contact and object geometry to unify both prehensile

and non-prehensile primitives.

c) Prehensile Manipulation (PM): As illustrated in Fig.

2c, this domain involves objects that can be directly grasped.

The goal is to alter the 6D pose of a block placed on the

table, beyond the robot’s reachability. To achieve this, the robot

must pick up the block in the end. This requires the robot to

figure out using a hook to extend the kinematic chain and pull

the block back into the reachability region, and then grasp it.

However, the way in which the robot picks up the hook will

affect whether the block can be reached, and where to pull

will also affect the entire trajectory and the total energy cost.

In this task, we want to show that our method can find an

optimal trajectory which has the minimum energy cost, while

successfully finishing the task.

We therefore define the evaluation function Ψ of the final

configuration xKT
as follows:

Ψ(xKT
) = λ∥xKT

− xT ∥, (14)

where xT is the target configuration in each domain, and λ =
102. The initial configuration x0 and target configuration xT

are randomly sampled from the long-horizon domain X , which

is the configuration space of the entire environment. In NPM

and PPM, X = SR ×SO, while in PM, X = SR ×SO ×ST .

Here, SO = SE(3) and SR = SE(3) denote the pose of the

object and robot end-effector, respectively, while ST = SE(2)
represents the pose of a tool positioned on the table.

It is worth noting that both PPM and NPM tasks involve

optimizing both discrete and continuous variables, akin to

mixed-integer programming. This complexity presents signif-

icant challenges in optimization, especially considering that

the objective functions are arbitrary without any structure,

depending on the value functions of skills. To this end, we

compare CEM-MD with some other techniques capable of



handling mixed-integer variables, including TTGO [30] and

the random shooting method. TTGO is an optimization tech-

nique specifically designed for functions in tensor train format,

enabling it to find the optimal solution extremely fast once the

TT model is provided. Random shooting is a naive technique

that randomly samples variables from the domain and returns

the one with the highest objective score. We apply these three

optimization techniques across the three domains, conducting

10 random initializations for each domain. The maximum

number of iterations for CEM-MD is set to H = 300, with an

early stopping criterion of 10−3 to terminate the while loop if

the objective value no longer decreases. The population size is

set to C = 1000, and the elite fraction is set to p = 0.3. The

number of categories Kc is set to 4. The initial parameters

µ, Σ, and p are computed using samples collected from a

uniform distribution in the first iteration. The results are shown

in Table II, with the computation error defined as the L2 norm

between the final state xKT
and the target configuration xT .

Given an arbitrary function, TTGO needs to approximate it

first using TT-cross and then optimize over the approximated

TT model, corresponding to the approximation stage and infer-

ence stage, separately. Table II shows that the approximation

stage usually takes a longer time, but once the TT model

has been obtained, the inference stage will be very fast. This

suits problems with static objective functions quite well [30].

However, in this work, if the high-level skill skeleton a1:K
changes, the resulting objective function will change as well.

This requires a new TT approximation, leading to expensive

computation. Moreover, TTGO requires discretization on each

dimension, resulting in a sub-optimal solution if no fine-tuning

stage is used afterward. Meanwhile, the shooting method

is much faster but can obtain poor solutions because of

the random distribution. CEM-MD takes a bit longer time

compared to random shooting but obtains good solutions by

updating the mixed continuous and discrete distribution. The

total computation time for these three domains is less than

0.1s, which is still fast enough in terms of long-horizon

planning.

C. Evaluation on Overall Performance of LSP

We then run the complete LSP framework for these three

domains to assess the overall performance. In MCTS, the

exploration parameter CE is set to 3, allowing for efficient

tree search while exploring different skeleton solutions. The

feedback reward r is defined as a binary variable 0/1, de-

termined by whether the geometric target is achieved. The

maximum iteration is set to H̃ = 100, with an early stopping

criterion that terminates the while loop upon finding enough

Ñs solutions. We set Ñs = 5 to explore multiple solutions.

Note that the Ñs solutions can be identical, depending on

MCTS and the total number of feasible solutions. We derive

13 skill operators from the five skill policies existing in the

skill library. The logic defining the preconditions and effects

of these operators is presented in Table IV. Each operator’s

name, preceding the underscore, denotes the skill policy it

utilizes. Elements highlighted in yellow are common across

(a) LSP (b) STAP

Fig. 4: The pushing subtask obtained for the PPM domain. Both 4a
and 4b have the same initialization configuration. The objective is
to employ the robot end effector (pusher) to move the slider to the
green line (x = 0), representing the edge of the table. LSP provides
a solution with the highest value in the space, requiring less control
effort, while STAP outputs one that involves multiple face switches.

both NPM and PPM domains, those in gray are specific to

the PPM domain, and those in green are specific to the PM

domain. Throughout the table, we use the following symbols:

o for an object, t for a tool, and r for a robot arm. Table

V displays the initial symbolic state s0 used in each domain,

along with the symbolic goals used for comparison.

Given the same initial state s0 and x0 in each

domain, we randomly sample 10 different target

configurations xT that require multi-step manipulation.

Fig. 3 shows that LSP can actively find multiple

solutions. For the Non-Prehensile domain, two

solutions found by LSP are push-pivot-pull

and pull-pivot-pull. For the Partly-Prehensile

domain, four different skeletons are found: push-pick,

pull-pick, push-pivot-pull-pick and

pull-pivot-pull-pick. For the Prehensile domain, the

solved skill skeleton is pick-place-pull-place-pick.

We then compare our method with another state-of-the-art

sampling-based sequential skill planning method called STAP

[2]. STAP focuses on constraints satisfaction. It requires an

explicit symbolic goal for high-level task planning, followed

by feasible solutions sampling. To ensure a fair comparison,

we use MCTS with an explicit symbolic goal as the task

planner in STAP and then employ CEM-MD for feasibility

checking given the skill skeleton. Table III illustrates the time

required to find one solution and the solution quality between

LSP and STAP. We can observe that LSP does not require a

symbolic target goal, whereas STAP relies on it. STAP can

find the solution faster than LSP. The reason is that STAP

focuses only on finding the feasible solution, while LSP aims

to provide (global) optimality over the full logic-geometric

path. This aligns with the comparison of cumulative rewards.

Note that the cumulative reward of each skill in the sequence

is normalized by the highest value in the corresponding value

function. We can observe that the trajectory found by LSP

leads to a higher cumulative reward compared with STAP,

indicating better optimality. Moreover, in the PPM domain,

the skill sequence varies with different lengths, showing that



Table IV: The Specification of Skill Operators, Preconditions and Effects. In the effects column, only the states that are changed after skill
execution are listed. The remaining symbolic states in the preconditions will be directly inherited by the effects.

Skill Operator Preconditions Effects
push wall (¬ (AtEdge o)) ∧ (¬ (AtWall o)) ∧ (¬ (AfterFlip o)) ∧ (onTable o) (AtWall o)

pivot (AtWall o) (AtWall o) ∧ (AfterFlip o)
pull wall (¬ (AtEdge o)) ∧ (¬ (AtWall o)) ∧ (¬ (AfterFlip o)) ∧ (onTable o) (AtWall o)

pull center (AtWall o) ∧ (AfterFlip o) ∧ (onTable o) (¬ (AtWall o))
pull edge (¬ (AtEdge o)) ∧ (¬ (AtWall o)) ∧ (¬ (AfterFlip o)) ∧ (onTable o) (AtEdge o)
pick edge (AtEdge o) ∧ (PartGraspable o) ∧ (HandEmpty r) (InHand o) ∧ (¬ (HandEmpty r))

pick center (¬(AtWall o)) ∧ (AfterFlip o) ∧ (PartGraspable o) ∧ (HandEmpty r) (InHand o) ∧ (¬ (HandEmpty o))
push edge (¬ (AtEdge o)) ∧ (¬ (AtWall o)) ∧ (¬ (AfterFlip o)) ∧ (onTable o) (AtEdge o)
pick tool (¬ (ReadyPull t o)) ∧ (Graspable o) ∧ (Reachable t) ∧ (HandEmpty r) (¬ (HandEmpty r))
pull tool (ReadyPull t o) ∧ (¬ (Reachable o)) ∧ (¬ (HandEmpty r)) ∧ (onTable o) (Reachable o)

place toolmove (¬ (HandEmpty r)) ∧ (¬ (Reachable o)) (ReadyPull t o)
place tool (¬ (HandEmpty r)) (HandEmpty r)
pick object (Reachable o) ∧ (Graspable o) ∧ (HandEmpty r) (InHand o)

Table V: Initial Symbolic State and Symbolic Goal of Each Domain. Note that LSP does not need symbolic goals. Such goals are needed
by the sampling-based sequential skill planning methods for comparison.

Domain Initial symbolic state Symbolic goal

NPM (¬ (AtEdge o)) ∧ (¬ (AtWall o)) ∧ (¬ (AfterFlip o)) ∧ (onTable o) (AfterFlip o) ∧ (¬ (AtWall o))

PPM (¬ (AtEdge o)) ∧ (¬ (AtWall o)) ∧ (¬ (AfterFlip o)) ∧ (HandEmpty r) ∧ (PartGraspable o) ∧ (onTable o) (Inhand o)

PM (¬ (Reachable o)) ∧ (Graspable o) ∧ (Reachable t) ∧ (HandEmpty r) ∧ (onTable o) (Inhand o)

multiple solutions are found, as depicted in Fig. 3b.

Fig. 4 illustrates a toy example of the solutions found by

LSP and STAP for the PPM domain, where the robot needs

to push the block (slider) to the edge of the table (depicted

as the green line) for grasping from the lateral side. LSP

determines the subgoal with the highest cumulative reward

by utilizing the value function, which represents the most

optimal state considering the system dynamics. In contrast,

STAP outputs a feasible state, which can be any configuration

on the edge theoretically. Here, we pick up the one closest

to the initialization in Euclidean space. However, to reach

this target, the pusher exerts more effort, involving two face

switches (visible in the discontinuous pusher trajectory in Fig.

4). This also underscores the utility of the value function space

for finding the optimal path considering system dynamics,

compared with Euclidean state space.

D. Real-robot Experiments

We conducted real-robot experiments in the Non-Prehensile

Manipulation domain, employing a 7-axis Franka Emika robot

and a RealSense D435 camera. A large box (21cm x 21cm x

16cm) was positioned on a flat plywood surface. The camera

tracked the object motion at 30 Hz with ArUco markers, and

the policy for each skill was updated at 100 Hz, with low-level

controllers (1000 HZ) actuating the robot. We employed dif-

ferent controllers depending on the skill operator. Specifically,

for pushing, we utilized the Cartesian velocity controller. For

other skills, we utilized Cartesian impedance controller. These

components are integrated into the Robot Operating System

(ROS), enabling their operation at varying frequencies.

Fig. 5 displays the keyframes of the robot experiments.

Given the initial and final configurations, the robot adeptly

manipulated the box by utilizing three planar manipulation

primitives, establishing and breaking contact with the sur-

roundings. It is worth noting that real-world contact-rich

manipulation is quite challenging due to friction uncertainty

and external disturbances [22]. This highlights the importance

of introducing skills for online real-time control. Through

skill sequencing, we demonstrate that the robot can actively

engage with the physical world, accomplishing a much more

complex long-horizon task. Additional results are presented in

our accompanying video.

VI. CONCLUSION AND FUTURE WORK

In this paper, we introduced an optimization-based approach

for sequential skill planning, namely Logic-Skill Programming

(LSP). A first-order extension of a mathematical program is

formulated to optimize the overall cumulative reward and

the performance of the final configuration. The cumulative

reward is abstracted as the sum of value function space.

To address such problems, we employed Tensor Train to

approximate the value functions and leveraged alternations

between symbolic search and skill value optimization to find

the optimal solutions.

We demonstrated that the value functions in TT format

provide a better approximation of cumulative reward compared

to state-of-the-art RL methods. Furthermore, the proposed LSP

framework can generate multiple skill skeletons and their

corresponding subgoal sequences, given only an evaluation

function of the final geometric configuration. We validated this

approach across three manipulation domains, highlighting its

robust performance in sequencing both prehensile and non-

prehensile manipulation primitives.

In this work, the skill learning method, TTPI, assumes a

low-rank structure of the value functions for approximation.



(a) Initialization (b) Pushing (c) Disturbance (d) Push-Pivot Switch

(e) Pivoting (f) Pulling (g) Target Reaching

Fig. 5: Non-prehensile manipulation domain task. The system is initialized as (a), and the objective is to manipulate the box to achieve the
target configuration as (g). The first stage involves pushing the box towards the wall with a 90

◦ rotation. Additionally, we apply an external
disturbance to test the skill policy (c). After the pushing stage, the robot switches to the pivoting skill (d, e), followed by pulling (f), until
reaching the final geometric configuration.

This works well for skill domains with low-to-medium di-

mensionality but struggles with image-based policy learning.

To address this issue, combining neural networks with TT

decomposition could be an interesting direction.

Moreover, the proposed LSP formulation relies on powerful

skills to address uncertainty and disturbances. This assumption

might not scale well to complicated scenarios, such as pushing

with moving obstacles. To address this, a promising approach

could be combining global motion planners, such as Rapidly-

Exploring Random Tree (RRT)[14], with the learned skill

policies as local controllers.

Furthermore, while Large Language Models (LLMs) have

demonstrated impressive results in task planning for robotics,

there is still a gap between high-level task planning and low-

level control due to the absence of geometric planning. We

believe that our method could address this issue by sequencing

multiple task-agnostic policies from a skill library. Given a

skill skeleton provided by LLMs, our method could assess

its feasibility and subsequently returns the optimal subgoal

sequence. This subgoal sequence could then be utilized by the

sequenced skill policies to actuate the robot in the real world.

ACKNOWLEDGMENTS

This work was supported by the China Scholarship Council

(grant No.202106230104), and by the SWITCH project (https:

//switch-project.github.io/), funded by the Swiss National Sci-

ence Foundation. We would like to thank Yan Zhang for

providing helpful feedback on this manuscript, and Jiacheng

Qiu for suggestions about the implementation of RL baselines.

REFERENCES

[1] Constructions Aeronautiques, Adele Howe, Craig

Knoblock, ISI Drew McDermott, Ashwin Ram, Manuela

Veloso, Daniel Weld, David Wilkins SRI, Anthony

Barrett, Dave Christianson, et al. Pddl— the planning

domain definition language. Technical Report, Tech.

Rep., 1998.

[2] Christopher Agia, Toki Migimatsu, Jiajun Wu, and Jean-

nette Bohg. Stap: Sequencing task-agnostic policies. In

2023 IEEE International Conference on Robotics and

Automation (ICRA), pages 7951–7958. IEEE, 2023.

[3] Tao Chen, Anthony Simeonov, and Pulkit Agrawal.

AIRobot. https://github.com/Improbable-AI/airobot,

2019.

[4] Cheng Chi, Siyuan Feng, Yilun Du, Zhenjia Xu, Eric

Cousineau, Benjamin Burchfiel, and Shuran Song. Dif-

fusion policy: Visuomotor policy learning via action

diffusion. arXiv preprint arXiv:2303.04137, 2023.

[5] Erwin Coumans and Yunfei Bai. Pybullet, a python

module for physics simulation for games, robotics and

machine learning. https://pybullet.org, 2016–2019.

[6] Pieter-Tjerk De Boer, Dirk P Kroese, Shie Mannor, and

Reuven Y Rubinstein. A tutorial on the cross-entropy

method. Annals of operations research, 134:19–67, 2005.

[7] Pete Florence, Corey Lynch, Andy Zeng, Oscar A

Ramirez, Ayzaan Wahid, Laura Downs, Adrian Wong,

Johnny Lee, Igor Mordatch, and Jonathan Tompson.

Implicit behavioral cloning. In Conference on Robot

Learning, pages 158–168. PMLR, 2022.

[8] Caelan Reed Garrett, Tomás Lozano-Pérez, and

Leslie Pack Kaelbling. Pddlstream: Integrating symbolic

planners and blackbox samplers via optimistic adaptive

planning. In Proceedings of the International Conference

on Automated Planning and Scheduling, volume 30,

pages 440–448, 2020.

[9] Caelan Reed Garrett, Rohan Chitnis, Rachel Holladay,

Beomjoon Kim, Tom Silver, Leslie Pack Kaelbling, and

https://switch-project.github.io/
https://switch-project.github.io/
https://www.cs.cmu.edu/~mmv/planning/readings/98aips-PDDL.pdf
https://www.cs.cmu.edu/~mmv/planning/readings/98aips-PDDL.pdf
https://arxiv.org/abs/2210.12250
https://github.com/Improbable-AI/airobot
https://arxiv.org/pdf/2303.04137.pdf
https://arxiv.org/pdf/2303.04137.pdf
https://arxiv.org/pdf/2303.04137.pdf
https://pybullet.org
https://link.springer.com/article/10.1007/s10479-005-5724-z
https://link.springer.com/article/10.1007/s10479-005-5724-z
https://arxiv.org/abs/2109.00137
https://arxiv.org/abs/1802.08705
https://arxiv.org/abs/1802.08705
https://arxiv.org/abs/1802.08705


Tomás Lozano-Pérez. Integrated task and motion plan-

ning. Annual review of control, robotics, and autonomous

systems, 4:265–293, 2021.

[10] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and

Sergey Levine. Soft actor-critic: Off-policy maximum

entropy deep reinforcement learning with a stochastic

actor. In International conference on machine learning,

pages 1861–1870. PMLR, 2018.

[11] Valentin N Hartmann, Andreas Orthey, Danny Driess,

Ozgur S Oguz, and Marc Toussaint. Long-horizon multi-

robot rearrangement planning for construction assembly.

IEEE Transactions on Robotics, 39(1):239–252, 2022.

[12] Francois R Hogan and Alberto Rodriguez. Reactive

planar non-prehensile manipulation with hybrid model

predictive control. International Journal of Robotics

Research (IJRR), 39(7):755–773, 2020.

[13] De-An Huang, Danfei Xu, Yuke Zhu, Animesh Garg,

Silvio Savarese, Li Fei-Fei, and Juan Carlos Niebles.

Continuous relaxation of symbolic planner for one-shot

imitation learning. In 2019 IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS),

pages 2635–2642. IEEE, 2019.

[14] Steven LaValle. Rapidly-exploring random trees: A new

tool for path planning. Research Report 9811, 1998.

[15] Tobia Marcucci and Russ Tedrake. Mixed-integer formu-

lations for optimal control of piecewise-affine systems. In

Proceedings of the 22nd ACM International Conference

on Hybrid Systems: Computation and Control, pages

230–239, 2019.

[16] Tobia Marcucci, Mark Petersen, David von Wrangel, and

Russ Tedrake. Motion planning around obstacles with

convex optimization. Science robotics, 8(84):eadf7843,

2023.

[17] Takahiro Miki, Joonho Lee, Jemin Hwangbo, Lorenz

Wellhausen, Vladlen Koltun, and Marco Hutter. Learning

robust perceptive locomotion for quadrupedal robots in

the wild. Science Robotics, 7(62):eabk2822, 2022.

[18] Utkarsh Aashu Mishra, Shangjie Xue, Yongxin Chen, and

Danfei Xu. Generative skill chaining: Long-horizon skill

planning with diffusion models. In Conference on Robot

Learning, pages 2905–2925. PMLR, 2023.

[19] João Moura, Theodoros Stouraitis, and Sethu Vijayaku-

mar. Non-prehensile planar manipulation via trajectory

optimization with complementarity constraints. In 2022

International Conference on Robotics and Automation

(ICRA), pages 970–976. IEEE, 2022.

[20] Ivan Oseledets and Eugene Tyrtyshnikov. TT-cross ap-

proximation for multidimensional arrays. Linear Algebra

and its Applications, 432(1):70–88, 2010.

[21] Ivan V Oseledets. Tensor-train decomposition. SIAM

Journal on Scientific Computing, 33(5):2295–2317,

2011.

[22] Tao Pang, HJ Terry Suh, Lujie Yang, and Russ Tedrake.

Global planning for contact-rich manipulation via local

smoothing of quasi-dynamic contact models. IEEE

Transactions on Robotics, 2023.

[23] Michael Posa, Cecilia Cantu, and Russ Tedrake. A

direct method for trajectory optimization of rigid bod-

ies through contact. International Journal of Robotics

Research (IJRR), 33(1):69–81, 2014.

[24] Carlos Quintero-Pena, Zachary Kingston, Tianyang Pan,

Rahul Shome, Anastasios Kyrillidis, and Lydia E

Kavraki. Optimal Grasps and Placements for Task and

Motion Planning in Clutter. In Proc. IEEE Intl Conf.

on Robotics and Automation (ICRA), pages 3707–3713,

2023.

[25] Antonin Raffin, Ashley Hill, Adam Gleave, Anssi

Kanervisto, Maximilian Ernestus, and Noah Dormann.

Stable-Baselines3: Reliable Reinforcement Learning Im-

plementations. Journal of Machine Learning Research,

22(268):1–8, 2021. URL http://jmlr.org/papers/v22/

20-1364.html.

[26] Reuven Rubinstein. The cross-entropy method for com-

binatorial and continuous optimization. Methodology and

computing in applied probability, 1:127–190, 1999.

[27] Dmitry V. Savostyanov and Ivan V. Oseledets. Fast

adaptive interpolation of multi-dimensional arrays in

tensor train format. The 2011 International Workshop

on Multidimensional (nD) Systems, pages 1–8, 2011.

[28] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec

Radford, and Oleg Klimov. Proximal policy optimization

algorithms. arXiv preprint arXiv:1707.06347, 2017.

[29] Dhruv Shah, Peng Xu, Yao Lu, Ted Xiao, Alexander T

Toshev, Sergey Levine, et al. Value Function Spaces:

Skill-Centric State Abstractions for Long-Horizon Rea-

soning. In Proc. Intl Conf. on Learning Representations

(ICLR), 2021.

[30] S. Shetty, T. Lembono, T. Löw, and S. Calinon. Tensor

Train for Global Optimization Problems in Robotics.

International Journal of Robotics Research (IJRR), 43

(6):811–839, 2024. doi: 10.1177/02783649231217527.

[31] S. Shetty, T. Xue, and S. Calinon. Generalized Policy It-

eration using Tensor Approximation for Hybrid Control.

In Proc. Intl Conf. on Learning Representations (ICLR),

2024.

[32] Siddharth Srivastava, Eugene Fang, Lorenzo Riano, Ro-

han Chitnis, Stuart Russell, and Pieter Abbeel. Combined

task and motion planning through an extensible planner-

independent interface layer. In 2014 IEEE international

conference on robotics and automation (ICRA), pages

639–646. IEEE, 2014.

[33] Richard S Sutton and Andrew G Barto. Reinforcement

learning: An introduction. MIT press, 2018.

[34] Richard S Sutton, Doina Precup, and Satinder Singh.

Between MDPs and semi-MDPs: A framework for tem-

poral abstraction in reinforcement learning. Artificial

intelligence, 112(1-2):181–211, 1999.

[35] Marc Toussaint. Logic-geometric programming: an

optimization-based approach to combined task and mo-

tion planning. In Proceedings of the 24th International

Conference on Artificial Intelligence, pages 1930–1936,

2015.

https://www.annualreviews.org/doi/abs/10.1146/annurev-control-091420-084139
https://www.annualreviews.org/doi/abs/10.1146/annurev-control-091420-084139
https://arxiv.org/pdf/1707.06347.pdf
https://arxiv.org/pdf/1707.06347.pdf
https://arxiv.org/pdf/1707.06347.pdf
https://arxiv.org/abs/2106.02489
https://arxiv.org/abs/2106.02489
https://journals.sagepub.com/doi/epub/10.1177/0278364920913938
https://journals.sagepub.com/doi/epub/10.1177/0278364920913938
https://journals.sagepub.com/doi/epub/10.1177/0278364920913938
https://arxiv.org/abs/1908.06769
https://arxiv.org/abs/1908.06769
https://lavalle.pl/papers/Lav98c.pdf
https://lavalle.pl/papers/Lav98c.pdf
https://dl.acm.org/doi/10.1145/3302504.3311801
https://dl.acm.org/doi/10.1145/3302504.3311801
https://www.science.org/doi/full/10.1126/scirobotics.adf7843
https://www.science.org/doi/full/10.1126/scirobotics.adf7843
https://www.science.org/doi/epdf/10.1126/scirobotics.abk2822
https://www.science.org/doi/epdf/10.1126/scirobotics.abk2822
https://www.science.org/doi/epdf/10.1126/scirobotics.abk2822
https://generative-skill-chaining.github.io/assets/2023_Generative_Skill_Chaining.pdf
https://generative-skill-chaining.github.io/assets/2023_Generative_Skill_Chaining.pdf
https://arxiv.org/abs/2109.13145
https://arxiv.org/abs/2109.13145
https://www.sciencedirect.com/science/article/pii/S0024379509003747
https://www.sciencedirect.com/science/article/pii/S0024379509003747
https://epubs.siam.org/doi/epdf/10.1137/090752286
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10225433
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10225433
https://journals.sagepub.com/doi/abs/10.1177/0278364913506757
https://journals.sagepub.com/doi/abs/10.1177/0278364913506757
https://journals.sagepub.com/doi/abs/10.1177/0278364913506757
https://ieeexplore.ieee.org/document/10161455
https://ieeexplore.ieee.org/document/10161455
http://jmlr.org/papers/v22/20-1364.html
http://jmlr.org/papers/v22/20-1364.html
http://jmlr.org/papers/v22/20-1364.html
http://jmlr.org/papers/v22/20-1364.html
https://link.springer.com/article/10.1023/A:1010091220143
https://link.springer.com/article/10.1023/A:1010091220143
https://ieeexplore.ieee.org/abstract/document/6076873
https://ieeexplore.ieee.org/abstract/document/6076873
https://ieeexplore.ieee.org/abstract/document/6076873
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/2111.03189
https://arxiv.org/abs/2111.03189
https://arxiv.org/abs/2111.03189
https://journals.sagepub.com/doi/10.1177/02783649231217527
https://journals.sagepub.com/doi/10.1177/02783649231217527
https://openreview.net/forum?id=csukJcpYDe
https://openreview.net/forum?id=csukJcpYDe
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6906922
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6906922
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6906922
https://web.stanford.edu/class/psych209/Readings/SuttonBartoIPRLBook2ndEd.pdf
https://web.stanford.edu/class/psych209/Readings/SuttonBartoIPRLBook2ndEd.pdf
https://www.sciencedirect.com/science/article/pii/S0004370299000521
https://www.sciencedirect.com/science/article/pii/S0004370299000521
https://www.ijcai.org/Proceedings/15/Papers/274.pdf
https://www.ijcai.org/Proceedings/15/Papers/274.pdf
https://www.ijcai.org/Proceedings/15/Papers/274.pdf


[36] Marc Toussaint, Kelsey R Allen, Kevin A Smith, and

Josh B Tenenbaum. Differentiable Physics and Stable

Modes for Tool-Use and Manipulation Planning. In Proc.

of Robotics: Science and Systems (R:SS), 2018. Best

Paper Award.

[37] Marc Toussaint, Jason Harris, Jung-Su Ha, Danny Driess,

and Wolfgang Hönig. Sequence-of-Constraints MPC:

Reactive Timing-Optimal Control of Sequential Manip-

ulation. In 2022 IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS), pages 13753–

13760. IEEE, 2022.

[38] Brian C Williams. Cognitive Robotics: Monte Carlo Tree

Search. Cambridge MA, 2016. MIT OpenCourseWare.

[39] Bohan Wu, Suraj Nair, Li Fei-Fei, and Chelsea Finn.

Example-Driven Model-Based Reinforcement Learning

for Solving Long-Horizon Visuomotor Tasks. In 5th

Annual Conference on Robot Learning, 2021.

[40] Danfei Xu, Ajay Mandlekar, Roberto Martı́n-Martı́n,

Yuke Zhu, Silvio Savarese, and Li Fei-Fei. Deep af-

fordance foresight: Planning through what can be done

in the future. In 2021 IEEE International Conference

on Robotics and Automation (ICRA), pages 6206–6213.

IEEE, 2021.

[41] Teng Xue, Hakan Girgin, Teguh Santoso Lembono, and

Sylvain Calinon. Demonstration-guided optimal control

for long-term non-prehensile planar manipulation. In

2023 IEEE International Conference on Robotics and

Automation (ICRA), pages 4999–5005. IEEE, 2023.

[42] Teng Xue, Amirreza Razmjoo, and Sylvain Calinon. D-

LGP: Dynamic Logic-Geometric Program for Reactive

Task and Motion Planning. In Proc. IEEE Intl Conf. on

Robotics and Automation (ICRA), pages 14888–14894,

2024.

[43] Zhutian Yang, Caelan R Garrett, Tomás Lozano-Pérez,

Leslie Kaelbling, and Dieter Fox. Sequence-based plan

feasibility prediction for efficient task and motion plan-

ning. In Proc. Robotics: Science and Systems (R:SS),

Daegu, Republic of Korea, July 2023.

https://www.roboticsproceedings.org/rss14/p44.pdf
https://www.roboticsproceedings.org/rss14/p44.pdf
https://arxiv.org/abs/2203.05390
https://arxiv.org/abs/2203.05390
https://arxiv.org/abs/2203.05390
https://ocw.mit.edu/courses/16-412j-cognitive-robotics-spring-2016/resources/mit16_412js16_l17/
https://ocw.mit.edu/courses/16-412j-cognitive-robotics-spring-2016/resources/mit16_412js16_l17/
https://proceedings.mlr.press/v164/wu22a/wu22a.pdf
https://proceedings.mlr.press/v164/wu22a/wu22a.pdf
https://arxiv.org/abs/2011.08424
https://arxiv.org/abs/2011.08424
https://arxiv.org/abs/2011.08424
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10161496
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10161496
https://arxiv.org/pdf/2312.02731
https://arxiv.org/pdf/2312.02731
https://arxiv.org/pdf/2312.02731
https://arxiv.org/abs/2211.01576
https://arxiv.org/abs/2211.01576
https://arxiv.org/abs/2211.01576

	Introduction
	Related Work
	Skill Learning
	Hybrid Long-horizon Planning
	Sequential Skill Planning

	Background
	Tensor Train for Function Approximation
	Logic-Geometric Program

	Methodology
	Problem Formulation
	Logic-Skill Programming
	Level 1: Symbolic Search
	Level 2: Skill Value Optimization


	Experiments
	Evaluation on Skill Policy Learning
	Evaluation on Skill Value Optimization
	Evaluation on Overall Performance of LSP
	Real-robot Experiments

	Conclusion and Future Work

