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Over the years, multimodal mobile sensing has been used extensively for inferences regarding health and well-being, behavior,
and context. However, a significant challenge hindering the widespread deployment of such models in real-world scenarios
is the issue of distribution shift. This is the phenomenon where the distribution of data in the training set differs from the
distribution of data in the real world—the deployment environment. While extensively explored in computer vision and
natural language processing, and while prior research in mobile sensing briefly addresses this concern, current work primarily
focuses on models dealing with a single modality of data, such as audio or accelerometer readings, and consequently, there is
little research on unsupervised domain adaptation when dealing with multimodal sensor data. To address this gap, we did
extensive experiments with domain adversarial neural networks (DANN) showing that they can effectively handle distribution
shifts in multimodal sensor data. Moreover, we proposed a novel improvement over DANN, calledM3BAT, unsupervised
domain adaptation formultimodalmobile sensing withmulti-branch adversarial training, to account for the multimodality of
sensor data during domain adaptation with multiple branches. Through extensive experiments conducted on two multimodal
mobile sensing datasets, three inference tasks, and 14 source-target domain pairs, including both regression and classification,
we demonstrate that our approach performs effectively on unseen domains. Compared to directly deploying a model trained
in the source domain to the target domain, the model shows performance increases up to 12% AUC (area under the receiver
operating characteristics curves) on classification tasks, and up to 0.13 MAE (mean absolute error) on regression tasks.

CCS Concepts: • Human-centered computing→ Ubiquitous computing; • Computing methodologies→ Learning
under covariate shift; Transfer learning.
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1 INTRODUCTION
In recent years, the prevalence of mobile and wearable devices equipped with multimodal sensors has increased
significantly, offering a wide range of applications in health, well-being, context awareness, and user experience
[41, 50]. These sensors can capture diverse data, including accelerometers, gyroscopes, photoplethysmography
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(PPG) readings, and location, as well as device usage data like application usage and typing and touch events. This
wealth of data presents exciting opportunities for understanding human behavior [7], physiological responses
[27], and contextual information [87] in an unobtrusive manner. Some examples include activity recognition
[7, 8, 11], stress detection [33, 48, 55], mood inference [44, 49, 72], eating and drinking behavior understanding
[51, 53, 54, 70], and social context recognition [36, 46, 52]. However, despite the growing interest in utilizing
multimodal sensor data, several challenges must be addressed to fully harness their potential in deployment
settings. One such under-explored challenge is the generalization of models across different users, populations,
and environments [3, 49, 85]. As each individual exhibits unique behavioral patterns and physiological responses,
building models that are robust and adaptable across diverse populations poses a challenge [57, 71]. Additionally,
variations in the context of data collection can significantly impact sensor readings and behavior patterns
(e.g., training a model in Italy and expecting it to work for people in India) [7, 49]. Achieving generalization is
challenging due to distribution shifts in the data.
The data collected from various sensors in different environments may not align perfectly, resulting in a

distribution shift between the source dataset (data that the model is trained on) and the target dataset (data that
the model would encounter in deployment) [13, 78]. These distribution shifts can have a negative impact on model
performance when applied in new and unseen contexts. Addressing distribution shifts requires the use of transfer
learning techniques, including robust domain adaptation approaches [24]. Despite numerous studies exploring
the applications of multimodal sensors in mobile and wearable devices, discussions around the challenges of
generalization and distributional shifts have been relatively limited [49, 85]. This is in contrast to other domains,
such as computer vision, natural language processing, and speech processing, where significant progress has been
made in understanding and mitigating domain shifts [90]. However, prior studies have emphasized that blindly
adapting techniques from other domains to mobile sensing datasets is not trivial and needs deeper investigation
because of the differences in the way data are collected, processed, and made sense of [13, 82, 85]. Therefore,
more investigations are needed in multimodal sensing settings to overcome challenges regarding distribution
shifts.

In mobile sensing settings, training models often rely on large-scale datasets collected from multiple users. In
deployment, models need to personalize for better performance, and having ground truth labels from users is a
primary way to do this. However, obtaining labeled ground truth from users poses challenges due to the sparse
nature of data collection and difficulties in acquiring accurate and reliable self-reports [84]. Consequently, the
lack of labeled data impedes the personalization of models for individual users, making it difficult to cater to their
unique characteristics and preferences. Therefore, the crucial step of adapting models to target populations (i.e.,
genders, age groups, countries, sub-populations, etc.) becomes essential even before personalization [7, 49]. By
adapting the models to the target population, we can ensure their effectiveness in diverse contexts, providing a
strong foundation for subsequent personalization efforts. Unsupervised domain adaptation (UDA) [23] techniques
play a vital role in bridging the gap between different domains, rendering the models more versatile and adaptable
to various users and environments. However, even though UDA has been explored in very few prior studies in
mobile sensing [13, 47, 49], how such techniques perform when multimodal data are present has rarely been
explored.
Considering these aspects, in this paper, we first conduct a statistical analysis of datasets to understand the

dynamics of distribution shifts across source-target domain pairs and different sensing modalities. Then, we
evaluate unsupervised domain adaptation with domain adversarial training (DANN) [13, 24], and also other
baselines such as maximum mean discrepancy (MMD) [13] and adversarial discriminative domain adaptation
(ADDA) [76], on two different multimodal mobile and wearable sensing datasets across both regression and
classification tasks. Then, we propose a novel model architecture for Multimodal Mobile Sensing data called
Multi-Branch domain Adversarial Training (M3BAT), showing improved performance over baselines across a
majority of inference tasks. In doing this, we answer the following research questions:
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RQ1: What dynamics regarding distribution shift can be observed by conducting a statistical analysis on multi-
modal sensing datasets?
RQ2: Does DANN on multimodal sensing datasets lead to improved UDA performance? How does it compare to
transfer learning-based fine-tuning when labels are available in the target domain?
RQ3: Does having multiple branches for different feature sets (based on modality or distribution shift-based
feature groups) lead to improved UDA performance?

By addressing the above research questions, this paper provides the following contributions:

Contribution 1: We conducted an analysis of two multimodal sensing datasets, namely WENET and WEEE.
These datasets provide valuable insights into distribution shifts across various dimensions—WENET explores
distribution shifts across different countries with modalities such as wifi, steps, proximity, location, screen
events, app usage, activity, etc., while WEEE captures shifts across devices worn on distinct body positions with
accelerometer, photoplethysmography (PPG), and gyroscope data. Our approach involved calculating Cohen’s-d
values for individual features and then aggregating them to discern patterns at the modality and feature set
level. This analysis allowed us to pinpoint the modalities that exhibited high distribution shifts across various
source and target domain pairs. For instance, in the WENET dataset, activity and screen event data demonstrated
minimal difference between Italy and India, while wifi and step count features displayed substantial dissimilarity,
attributable to low and high shifts, respectively. These trends contrasted across source-target pairs, underscoring
the importance of a multimodality-aware architecture that accounts for individual modality and feature set level
shifts during the domain adaptation process. This leads to the question of whether it is worth exploring model
architectures that explicitly cater multimodality of data in unsupervised domain adaptation.
Contribution 2: The datasets employed in our study provide a platform for exploring diverse inferences,
encompassing mood, social context, and energy expenditure estimation via classification and regression tasks. In
order to comprehensively assess the impact of multimodality, we transformed the datasets into tabular formats
and conducted domain adaptation using domain adversarial training with gradient reversal, employing the DANN
approach. Notably, our results showed an improvement in performance, demonstrating an increase of up to 8% in
AUC for classification tasks, and a reduction of 0.08 in MAE for regression tasks when compared to deploying
the model directly on target domains. Remarkably, in the context of the WENET dataset, unsupervised domain
adaptation demonstrated competitive performance with transfer learning-based fine-tuning, highlighting its
potential to enhance performance even when not explicitly tailored to multimodality. However, for the WEEE
dataset, while domain adversarial training led to performance improvement, it fell short of transfer learning.
This disparity could be attributed to the presence of high-quality gold standard labels in both source and target
domains in WEEE (as opposed to both subjective and objective, but silver-standard labels in WENET), which
were effectively harnessed for model fine-tuning when labels were accessible in the target domain. This analysis
underscores the significance of label quality and its interplay with domain adaptation techniques, offering insights
into the diverse impacts of datasets and label types on overall performance.
Contribution 3: We introduce an improvement to DANN, in the form of a novel architecture for domain
adversarial training, denoted as M3BAT, which employs a multi-branch neural network structure featuring
multiple encoders tailored to handle different feature sets. Each encoder is designed to accommodate specific
features, taking into account factors such as the extent of distribution shifts; and features stemming from various
modalities. Through the concatenation of encoder outputs, our architecture incorporates domain adversarial
training techniques, including parameter annealing and staged training. Our analysis suggests that employing
three branches yields more stable training for the datasets and tasks under consideration for WENET. These
branches correspond to high, moderate, and low shift features. For WEEE, we employ 2-3 branches in different
setups. On average, we observe an increase of up to 12% in AUC for classification tasks, along with a reduction of
up to 0.13 in MAE for regression tasks, as compared to deploying models from the source to the target domain.
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These findings underscore the potential advantages of our methodology in managing distribution shifts in
multimodal data.

The study is organized as follows. In Section 2, we describe the background and related work. Then we describe
the proposed architecture in Section 3. Section 4 provides a description of the data used. In Section 5, Section 6,
and Section 7, we define the methods and present results to answer RQ1, RQ2, and RQ3, respectively. We discuss
implications, limitations, and future work in Section 8, and conclude the paper in Section 9.

2 BACKGROUND AND RELATED WORK

2.1 Distribution Shift
In the context of machine learning, distribution shift refers to the mismatch between the probability distributions
of the data in the source domain (where the model is trained) and the target domain (where the model is deployed)
[78]: 𝑝𝑋,𝑌 (source) (𝑥,𝑦) ≠ 𝑝𝑋,𝑌 (target) (𝑥,𝑦). When this mismatch occurs as a result of epistemic uncertainty
[34], the model’s performance can degrade significantly in the target domain, as it has not seen data from that
domain during training. The epistemic uncertainty could be due to many sampling biases such as temporal
bias, population bias, and social bias [59]. Hence, in other terms, distribution shifts can arise due to various
factors, such as differences in data collection settings, user preferences, environmental conditions, and cultural
variations. While there are many nitty-gritty details, three primary types of distribution shift can be identified
[78]: covariate shift, label shift, and concept drift. Understanding these types is crucial for effectively addressing
the challenges posed by distribution shifts. The first type, namely covariate shift, also known as input shift or
feature shift, occurs when the input data’s distribution differs between the source and target domains, but the
conditional distribution of the labels given the input remains the same. In other words, the relationship between
the input features and the labels is consistent across domains, but the frequency of different feature values may
vary. This can be represented as: 𝑝𝑋 (source) (𝑥) ≠ 𝑝𝑋 (target) (𝑥) and 𝑝𝑌 |𝑋 (source) (𝑦 | 𝑥) = 𝑝𝑌 |𝑋 (target) (𝑦 |
𝑥). Therefore, differences in data collection methods, sensor characteristics, or user behavior across different
domains can cause covariate shifts. To illustrate covariate shift, consider a sentiment analysis model trained
on movie reviews from the source domain (e.g., American movies) and deployed in the target domain (e.g.,
Indian movies). The language and writing style of the reviews may differ between the two domains, even though
the sentiment expressed by the reviews is the same. In this case, the covariate shift arises from variations in
language usage while the sentiment remains consistent. The second type of distribution shift, prior probability
shift, also known as label shift, occurs when the label distributions are different between the source and target
domains, while the conditional distributions of features given the labels are the same. It can be represented as:
𝑝𝑌 (source) (𝑦) ≠ 𝑝𝑌 (target) (𝑦) and 𝑝𝑋 |𝑌 (source) (𝑥 | 𝑦) = 𝑝𝑋 |𝑌 (target) (𝑥 | 𝑦). Label shift can arise when
the labeling process is biased or when the target domain has different class distributions compared to the source
domain. Continuing with the sentiment analysis example, label shift may occur if the sentiment expression in
movie reviews is perceived differently in different cultures. For instance, positive reviews in the source domain
might be labeled as negative in the target domain due to cultural differences in how sentiments are conveyed.
Finally, the third type of distribution shift, concept drift, is a much more complex aspect to mitigate [78] and not
the focus of this paper. In this paper, the primary objective is to handle covariate shifts.

2.2 Unsupervised Domain Adaptation
Unsupervised domain adaptation (UDA) is a transfer learning technique used to mitigate the effects of distribution
shifts between the source and target domains without requiring labeled data from the target domain [13, 23, 78].
The process was primarily developed to handle the covariate shift. As described in [32], there are multiple
methods that achieve this. Self-supervised domain adaptation, mostly explored in computer vision [2, 45, 83],
is a common technique that learns domain invariant features through pretext learning tasks where the target
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can be obtained without supervision. Statistical divergence can also be used in this context. The approach seeks
to derive features that are consistent across domains by minimizing domain discrepancies in a latent feature
space. Different techniques are used to implement this: Maximum mean discrepancy (MMD) [68], Correlation
alignment (CORAL) [75], or contrastive domain discrepancy (CDD) [37]. Furthermore, Test-Time adaptation
(TTA) [35, 42, 43, 79] can also mitigate cases where the test data distribution differs from the training data. TTA
relies on adapting a pre-trained model from source domain to the target domain before making predictions, not
requiring to finetune the model on labeled data from the target distribution and not even requiring the source
dataset. Lastly, domain adversarial training (DANN), introduced by Ganin et al. [24], is a popular approach for
UDA [24, 81, 88]. Variations of this technique have shown to perform well on sensor data [13, 82], motivating us to
explore the technique further. While DANN can indirectly influence the alignment of label distributions or prior
probabilities between domains through the shared feature space, it is not the primary mechanism for addressing
prior probability shifts. Hence, this process is suited to cover both covariate and label shifts to varying extents.
The key idea is to learn a feature representation that is domain-invariant, enabling the model to generalize well
across domains. In domain adversarial training, a domain discriminator is introduced along with the primary task
model (e.g., classification or regression). The domain discriminator aims to predict the domain of the input data
(source or target) based on the feature representation learned by the primary task model. Simultaneously, the
primary task model tries to minimize the task-specific loss and maximize the domain discriminator’s confusion,
effectively aligning the feature distributions between the source and target domains. To increase the confusion,
gradient reversal can be used by multiplying the loss by −𝜆 (𝜆 is a scaler) when propagating loss to the feature
extractor. The domain discriminator, in turn, tries to distinguish between the source and target domains accurately.
This adversarial process encourages the primary task model to learn features that are less sensitive to domain
variations and more transferable between domains, leading to improved generalization in the target domain.
Consequently, unsupervised domain adaptation with domain adversarial training provides a powerful solution to
adapt models to new domains and improve their performance in diverse real-world settings, such as multimodal
mobile and wearable sensing.

2.3 Adapting Models to Individuals
Several studies have delved into domain adaptation by treating individuals as distinct domains, focusing on
training models with data from many individuals and adapting them to an unseen individual [29]. This approach,
while highly valuable, presents a relatively less noisy and more straightforward domain adaptation task similar
to personalizing the model for the target individual, but without having labeled data. Data used in the adaptation
process comes only from a certain individual. In our work, however, we confront a more nuanced scenario.
Our domain adaptation tasks involve adapting the model across larger source and target domains, broader
than individuals. This undertaking adds layers of complexity, as it requires addressing the challenges posed by
variations across geographic regions, body positions, and individual behaviors within the target domain. As prior
work has highlighted [7, 49], it is worth adapting models to larger contexts before personalizing models because
we might not be able to access data from individuals, but we might have access to data from the broader target
domain an individual belongs to. This is the aim of this paper. Hence, we introduce novel considerations and
methodologies to tackle this more challenging and multifaceted adaptation task.

2.4 Mobile Sensing for Inferences Regarding Health and Well-Being, Behavior, and Context
Mobile sensing using smartphones and wearable devices has facilitated the development of context-aware systems
that can infer various aspects related to health and well-being, behavior, and context [41]. These studies leverage
diverse sensor data captured by mobile devices, including accelerometer, gyroscope, gps, heart rate monitor,
proximity, bluetooth, and app usage, among others, to gain insights into individuals’ activities, mood, social
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context, and energy expenditure [6, 9, 10, 41, 50]. Various studies have explored mood inference, aiming to
understand and predict users’ emotional states [44, 72]. Servia-Rodríguez et al. [72] collected a large-scale dataset
from multiple countries to infer binary mood using the circumplex mood model with population-level models.
Mood instability has also been examined using mood reports and phone sensor data [56, 89]. Context-aware
systems have been extended to infer social context, including whether individuals are alone or with others
during different activities [51, 52]. For example, Meegahapola et al. [52] used sensor data from Switzerland and
Mexico to infer social context during eating activities, while another study [51] examined the social context of
young adults during alcohol drinking episodes. Further, energy expenditure estimation (EEE) plays a crucial role
in understanding and managing chronic diseases like obesity, diabetes, and metabolic disorders [6, 91]. It also
enables personalized health management by providing insights into physical activity, energy consumption, and
net calorie intake [40]. Wearable devices such as fitness trackers and smartwatches have been widely used for
EEE due to their convenience and capability to measure activity, heart rate, and sleep patterns [17]. These devices
overcome the limitations of costly gold standard EEE methods and have been positioned at various body locations
to estimate energy expenditure [18, 67]. Overall, the existing literature in the field of multimodal sensing offers
valuable insights and tools for inferring various attributes from smartphone and wearable sensor data. However,
there is a research gap in understanding generalization and distributional shifts across many different settings,
which this paper aims to address in the context of UDA. The proposed UDA approach seeks to improve the
generalization of inference models, making them more adaptable and robust in diverse settings.

2.5 Domain Generalization in Mobile Sensing
Achieving model generalization across multiple domains or datasets has been a challenging problem in the
machine learning community. Transfer learning addresses this issue through domain adaptation, where the
model can access some data with labels from the target domains in addition to the source domains [78]. A more
challenging task is domain generalization, where the model can only access data from the source domains [85]. In
mobile sensing settings, Xu et al. [85] examined this problem and suggested a model based on multi-task neural
networks to create a robust model that would work well in target domains without access to data or labels when
training. Even though the performance increase that they reported was not high (2% to 5%), it was justifiable
given that the inference they performed regarding depression detection is already a challenging one. In addition,
they highlight that deep learning-based domain generalization techniques designed for computer vision tasks
do not work well on longitudinal and multimodal passive sensing data. While they also used multimodal data,
they focused on domain generalization and not unsupervised domain adaptation, which is a different problem
setting. Another study by Qian et al. [66] introduced the Generalizable Independent Latent Excitation (GILE)
method for domain generalization. GILE is highly adaptable to varying activity patterns among individuals. It
automatically disentangles domain-agnostic and domain-specific features, minimizing correlations between them.
GILE’s end-to-end training with three loss functions enhances its expressiveness and informativeness, and the
empirical results on benchmark datasets demonstrate its superiority in handling domain shifts and improving
model generalization across individuals. While the above papers looked into domain generalization, our analysis
suggests a shift from domain generalization to domain adaptation, allowing the model to access a small fraction
of unlabelled data from target domains.

2.6 Domain Adaptation in Mobile Sensing
A common approach for conducting domain adaptation is using different loss functions. Rey et al. [22] used
contrastive loss, while Chang and Mathur et al. [13] used maximum mean discrepancy (MMD) loss. Many
other studies [12, 60, 69] also used contrastive learning-based techniques and looked into aligning features
of the latent space to achieve domain adaptation. In this paper, we opted to leverage adversarial training
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over contrastive learning-based or other discrepancy-based techniques for several reasons. Firstly, our domain
adaptation task involved large distribution shifts between source and target domains, where data distributions
differed substantially. Domain adversarial training is suited to address and mitigate such domain discrepancies
explicitly, making it a more appropriate choice for our scenario. Additionally, domain adversarial training has
demonstrated its effectiveness in various domain adaptation tasks, offering a robust and established framework
even for sensor data [13, 82]. While contrastive learning is valuable in many machine learning applications, it
may require more adaptation and nuanced design to handle domain adaptation tasks effectively in multimodal
sensing setups. Given these considerations, we found domain adversarial training to be a pragmatic and reliable
choice to enhance our model’s performance in the context of multimodal data.
Finally, it is also worth mentioning the UDA has been previously tried for mobile sensor data by Chang and

Mathur et al. [13], with domain adversarial training. They also used adversarial domain adaptation, similar to
ours. However, they only considered a single modality of data in their experiments, hence making the task simpler
compared to our experiments, which consider features from multimodal data with varying degrees of shifts
across source and target domains. For example, in single modality settings, if the data are accelerometer or audio
data, depending on the shift for the specific modality, UDA techniques would facilitate adaptation. However, in
mobile sensing, multiple modalities of data are present. The multimodal setting has been studied in a recent
study [82], by using all features as input using a single encoder. They also performed domain adversarial training
and obtained promising results. Nevertheless, existing works have largely overlooked the potential of leveraging
the multimodality inherent in data during the domain adaptation process. Consequently, techniques specifically
designed to harness this multimodality in UDA for mobile sensing applications are scarce. Our paper attempts to
bridge this research gap by introducing and evaluating methods that capitalize on mobile sensing data’s rich and
multimodal nature to enhance domain adaptation outcomes.

2.7 Summary
In summary, our work stands out from previous studies by specifically targeting passive sensing datasets collected
from mobile and wearable devices, diverging from the commonly explored data types like images or audio
[47, 65]. Moreover, we focus on domain adaptation instead of domain generalization [85]. Furthermore, our
approach focuses on the complexity of multimodal data, as opposed to the single modality focus from most
existing literature [13] or not considering multimodality [82]. This multimodal perspective is critical given the
distinct nature of mobile sensing data, which encompasses a variety of user behaviors, environmental contexts,
and health indicators. With M3BAT, we implement a multi-branch approach to address the inherent challenges
of multimodal mobile sensing. This framework features multiple branches, each tailored to handle distinct sets
or modalities of features, thereby enhancing the model’s ability to adapt. By separating the data into different
streams, we hypothesize that our model can specialize in processing each modality or feature set, applying specific
transformations and learning domain-invariant representations more effectively. This multi-branch strategy not
only simplifies the learning process for each data type but also leads to a more refined and robust adaptation
performance. Our framework allows for the nuanced integration of the diverse and heterogeneous data sources
that characterize multimodal mobile sensing, such as accelerometer readings, GPS locations, activity patterns,
and app usage logs. By leveraging this multi-branch architecture, we show that our model achieves superior
generalization across different users and environments.

3 M3BAT ARCHITECTURE
In this section, we aim to define the proposed architecture, including the intuition behind it. We will first define an
unsupervised domain adaptation setting for classification and regression (Section 3.1). This can be represented in
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a generic form similar to DANN [24], as shown in Figure 1. Then in Section 3.2, we define how multiple branches
could be used in both classification and regression instead of a single encoder that outputs a feature embedding.
This is also shown in Figure 2. Finally, in Section 3.3, we describe how different 𝜆 could be used for different
branches, depending on the shift of input features to that branch in source and target domains, to improve the
performance of the model. This is summarized in Figure 3.

3.1 Unsupervised Domain Adaptation with Domain Adversarial Training (DANN)
Given two domains, a source domain D𝑠 = {(𝑥𝑠𝑖 , 𝑦𝑠𝑖 )}

𝑛𝑠
𝑖=1 and a target domain D𝑡 = {𝑥𝑡𝑗 }

𝑛𝑡
𝑗=1, where 𝑥

𝑠
𝑖 and 𝑥𝑡𝑗

represent the input feature vectors from the source and target domains, respectively, and 𝑦𝑠𝑖 represents the
corresponding class labels in the source domain. The goal is to learn a classifier or regressor 𝑓 (𝑥) that can
accurately infer targets 𝑦 in the target domain using the labeled source domain data and the unlabeled target
domain data. The domain adversarial training process consists of three main components:

• Encoder: A multi-layer perceptron neural network represented by 𝐺 (𝑥), which maps the input feature
vectors in dimensionally reduced shared feature space, where 𝐺𝑠 = 𝐺 (𝑥𝑠𝑖 ) and 𝐺𝑡 = 𝐺 (𝑥𝑡𝑗 ) represent the
features of the source and target domain samples, respectively.

• Target Classifier or Regressor: A head represented by 𝐶 (𝐺𝑠 ), which takes the shared features 𝐺𝑠 as input
and predicts 𝑦𝑠 in the source domain.

• Domain Classifier: A domain discriminator represented by 𝐷 (𝐺𝑠 ) and 𝐷 (𝐺𝑡 ), which takes the shared
features𝐺𝑠 and𝐺𝑡 as input, respectively, and predicts whether the features are from the source or target
domain.

The overall objective function for unsupervised domain adaptation with domain adversarial training for
classification or regression can be written as:

min
𝐺,𝐶

max
𝐷

1
𝑛𝑠

𝑛𝑠∑︁
𝑖=1

L𝑦 (𝐶 (𝐺 (𝑥𝑠𝑖 )), 𝑦𝑠𝑖 ) −
𝜆

𝑛𝑠 + 𝑛𝑡

𝑛𝑠+𝑛𝑡∑︁
𝑖=1

Ld (𝐷 (𝐺 (𝑥𝑠𝑖 )), 𝐷 (𝐺 (𝑥𝑡𝑖 )))

where L𝑦 is the classification loss (e.g., cross-entropy loss) or the regression loss (e.g., mean squared error)
function for the source domain samples; Ld is the adversarial loss function, such as the binary cross-entropy
loss, for the domain discriminator to distinguish between the source and target domain features; 𝜆 is a parameter
that controls the trade-off between the classification/regression and adversarial loss—also known as gradient
reversal layer (usually 0 ≤ 𝜆 ≤ 1), The first term aims to minimize the classification loss for the source domain
samples, encouraging the model to infer the targets in the source domain accurately; and the second term aims
to maximize the domain discriminator’s confusion between the source and target domain features, effectively
aligning the feature distributions of the two domains in the shared feature space.
In both classification and regression settings, unsupervised domain adaptation with domain adversarial

training is a powerful technique to adapt models trained on a labeled source domain to perform well on a different,
unlabeled target domain. The adversarial training process encourages the model to learn domain-invariant
features, thereby improving the model’s generalization to new, unseen data from the target domain. In addition,
when defining, whether to use −𝜆 or +𝜆 depends on the loss function used for the domain discriminator. When
the domain discriminator is binary cross-entropy which provides a negative value, using −𝜆 as above works [24].

3.2 Multiple Branches to Process Multimodal Data
To represent the setup with multiple branches for processing modalities or feature sets from multiple modalities,
we can introduce separate branches. Let’s denote the encoders as 𝐸 (𝑚) (𝑥 (𝑚) ), where𝑚 represents the number
of branches and 𝑥 (𝑚) is the input data from branch𝑚, which could be multiple features in the tabular datasets
that we consider. Each encoder processes the input data from its corresponding modality and maps it to a shared
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Fig. 1. Base architecture for UDA with
features from multimodal sensors, en-
coder, domain and target classifier/re-
gressor, and gradient reversal layer.
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Fig. 2. Modification to the base archi-
tecture to have multiple branches that
concatenate to create a feature embed-
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Fig. 3. Using different 𝜆 for branches
depending on the average distribution
shift of features in the branch. When
there is little to no shift, 𝜆≈0 (green).

feature space. In this case, the overall feature extractor𝐺 (𝑥), which used to be a single encoder in the previous
setups mentioned in Section 3.1, can now be defined as a combination of these multiple encoders for each
modality. We can represent this as: 𝐺 (𝑥) = concat

(
𝐸 (1) (𝑥 (1) ), 𝐸 (2) (𝑥 (2) ), . . . , 𝐸 (𝑀 ) (𝑥 (𝑀 ) )

)
. Here, 𝐺 (𝑥) contains

the outputs from all the encoders corresponding to the different branches, and these outputs are concatenated to
form a shared feature representation that captures information from all features. With the multiple branches,
the objective function for unsupervised domain adaptation with domain adversarial training can be extended to
include all the modalities. With this setup, each specific encoder learns a feature representation specific to its
input data, and the shared feature space created by combining the outputs of these encoders captures information
from all the modalities. This approach allows the model to adapt to multiple data modalities simultaneously and
improves the domain adaptation performance by considering the shared information among different modalities.

3.3 Training Process with Multimodal Domain Adversarial Training
The training process for multimodal domain adversarial training involves a staged approach to adapt the model
to the target domain while considering the distribution shift across different modalities. The process includes the
following steps:

3.3.1 Step 1: Train Common Encoder with Target Discriminator. In the first step, we train a common encoder,𝐺 (𝑥),
with only the target discriminator (classifier or regressor), 𝐷 (𝐺 (𝑥𝑠𝑖 )). The target discriminator is responsible for
performing either classification or regression. During this step, only the source domain data is used for training.
The objective function for this step is to minimize the target discrimination loss, depending on whether it is
regression or classification (Section 3.1).

3.3.2 Step 2: Introduce Unlabeled Target Domain Data. After training the common encoder with the target
discriminator, we introduce the unlabeled target domain data, D𝑡 = {𝑥𝑡𝑗 }

𝑛𝑡
𝑗=1, into the training process together

with domain discriminator. This is done to further align the feature distributions of the source and target domains
in the shared feature space. During this step, the objective function changes a bit as we aim to perform both
domain and target inferences, similar to what would happen if we used a multi-task neural network. In terms of
gradient reversal, the 𝜆=0 at this stage.

3.3.3 Step 3a: Increase 𝜆 for Adversarial Objective with Annealing. To increase the impact of the adversarial
objective gradually, we anneal the value of 𝜆 from zero to one during training, as suggested in prior work [23, 86]
(𝜆𝑝 = 2

1+exp(−𝛾 ·𝑝 ) − 1, where 𝛾=10 and 0<=𝑝<=1 based on the epoch). The parameter 𝜆 controls the trade-off
between the target loss and the domain loss. Increasing 𝜆 over time encourages the common encoder to learn
more domain-invariant representations, in a stable way. In Figure 1, we show the architecture at this stage, which
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is similar to the DANN architecture [24]. Annealing 𝜆 from zero to one works because it facilitates a controlled
and adaptive process of aligning feature representations between the source and target domains, ultimately
leading to improved domain adaptation performance. The rationale behind this approach is to start with minimal
domain alignment (𝜆=0), allowing the model to initially focus on learning source domain knowledge without
being influenced by the target domain. As training progresses and the 𝜆 parameter gradually increases, the model
is encouraged to align the feature representations of both domains [23].

3.3.4 Step 3b: Replace Encoder with Multiple Branches. After training with the common encoder and gradually
increasing the adversarial objective, we replace the common encoder,𝐺 (𝑥), with a multi-branch setup (Section 3).
Each encoder, 𝐸 (𝑚) (𝑥 (𝑚) ), processes the input data from its corresponding modality or a set of features and
maps it to the shared feature space. The combined feature representation is then formed by concatenating the
outputs of all the branches. With this setup, steps 1 and step 2 can be followed to train the model with staging and
annealing. In our experiments, we observed that having a staged process was useful for stable training. Moreover,
the decision to train the target discriminator alongside the common encoder was made to enhance the stability of
the training process. Starting with a common encoder simplifies the initial training stages while also ensuring
satisfactory performance on the target inference. Upon transitioning to the multi-branch setup, we were presented
with two options: we could either freeze the target discriminator, allowing the encoders to independently adjust
to domain shifts for optimal target inference, or we could allow the target discriminator to continue fine-tuning
in tandem with the new multi-branch configuration. Our preliminary experiments indicated that maintaining the
adaptability of the target discriminator yielded better results, which is why this approach was adopted in our
study. Additionally, we observed that commencing the training with multiple encoders from the outset did not
lead to convergence, suggesting that a gradual buildup to the multi-branch system was necessary for effective
training. Moreover, here maximum 𝜆 = 1 across all branches. In Figure 2, we show the architecture at this stage.

3.3.5 Step 3c: Increase 𝜆 for Different Branches with Annealing. We train the model as in Step 3b. Then, we
adaptively decrease the value of 𝜆 from 1 if needed, for each branch with annealing, until it reaches 𝜆𝑚 (0 ≤ 𝜆𝑚 ≤ 𝜆

= 1). The 𝜆𝑚 values, which control the impact of the adversarial objective for each specific encoder, are determined
based on the average Cohen’s-d value [16] for each feature group. Then, the Cohen’s-d values across the branches
were normalized to a value between 0 and 1. If the Cohen’s-d of the lowest branch is above 0.2 (above small effect
size), a zero was introduced artificially before normalizing to ensure a considerable shift does not go unnoticed
when performing adversarial training with different 𝜆𝑚 . As an example, if the Cohen’s-d values were 0.8, 0.6,
and 0.05, the 𝜆𝑚 values would be 1, 0.58, and 0. If the Cohen’s-d values from branches were 0.9 and 0.4, we
would introduce a 0 to make it 0.9, 0.4, and 0 because 0.4 is above small effect size, and obtain 𝜆𝑚s 1 and 0.44
for the two branches. Hence, this accounts for the distribution shift between the source and target domains
specific to input features to each branch. Figure 3, we show the architecture at this stage. It is also worth noting
that we considered two primary setups when selecting features for different branches in the encoder section
of the model: Setup 1 utilized branches based on modalities in the WENET dataset, creating three branches
corresponding to the modalities with the highest, lowest, and intermediate levels of shift. Due to optimization
challenges discussed in Section 6, we limited the number of branches to three, normalizing the Cohen’s-d values
for these branches, with the highest shift set to 1 and the lowest to 0. Experiments were first conducted with a
uniform weight (𝜆 = 1) across branches, followed by varying weights (𝜆𝑚) in accordance with the level of shift.
A similar two-branch approach was adopted in the WEEE dataset, with only two modalities. This was mainly
because there were only three modalities in this datasets. For Setup 2, applied to both datasets, we sorted features
by shift magnitude regardless of the modality, dividing them into three equal groups (top 33%, bottom 33%, and
middle 33%). Different 𝜆𝑚 values were assigned to these branches based on their respective shifts. Both setups,
involving tailored 𝜆𝑚 adjustments, represent our methodical approach to effectively manage domain shifts in
multimodal mobile sensing data. More details regarding these two set ups will be discussed in Section 7.1.
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With this staged training process, the multimodal domain adversarial training algorithm can effectively adapt
the model to the target domain while considering the distribution shift across different modalities or feature
groups (e.g., regardless of the modality, features with a high, moderate, and low distribution shift in separate
branches). The hypothesis is that this approach would allow the model to learn domain-invariant representations
capable of capturing relevant information from all modalities, improving the generalization and adaptation
performance to new, unseen data in the target domain.

4 DATASETS AND INFERENCES
To examine our architecture, we used multiple datasets. Both these datasets have been used in previous publica-
tions, and inferences that can be made with them too, are defined. Hence, the objective is to perform the same
inferences while examining the proposed architectures.

4.1 WENET: Multimodal Smartphone Sensing Dataset from 8 Countries
The WENET dataset comes from our previous work [49]. The data collection spanned four weeks and involved
over 670 college students from eight universities in eight countries: Italy, Denmark, the United Kingdom, China,
India, Mongolia, Paraguay, and Mexico. Participants contributed three distinct types of data: (i) closed-ended
questionnaires (to capture demographic information such as age, sex, country, etc.), (ii) hourly self-reports
throughout the day (to capture hourly mood, social context, etc.), and (iii) sensor data (continuous sensing
modalities such as activity type, step count, Bluetooth, WiFi, location, cellular, and proximity; and interaction
sensing modalities including app usage, touch events, screen on/off episodes, and notifications.). All sensor
measurements were aggregated with self-reports to create features characterizing the time window during which
the report occurred. The final dataset we obtained has over 100 features (for more detailed information on the
data processing pipeline and extracted features, please refer to [49]). Regarding missing data in the context of
smartphone sensing, it can arise due to various reasons such as the device being in low-consumption mode,
sensor failure, user privacy settings, airplane mode, or hardware limitations in certain phone models. To address
this issue, feature modalities with more than 70% missing data, namely Bluetooth low energy, Bluetooth normal,
Cellular GSM, and Cellular WCDMA, were dropped similar to prior work [7, 70]. More details regarding the used
features can be found in Appendix A.

4.2 WEEE: Multimodal Wearable Sensing Dataset for Energy Expenditure Estimation
TheWEEE dataset was collected from 17 participants (12 men and 5 women) by the authors of [25]. The processed
version of the dataset we used in this paper was obtained from the authors of [6]. The data collection process
involved capturing information during the execution of three specific activities: resting, cycling, and running.
Participants were equipped with eight different wearable devices, including an Indirect Calorimeter device, which
served as the ground-truth measurement for energy expenditure estimation. Alongside sensor data, the dataset
also encompasses demographic and body composition details, activity specifics, and questionnaire-based data
obtained from each participant. Despite the use of eight devices during data collection, only three devices were
selected for this study due to inconsistencies, missing data, and also because they contain comparable multimodal
data, allowing us to conduct domain adaptation. These devices and their respective sensors are abbreviated as
follows: i) Nokia Bell Labs Earbuds: accelerometer, gyroscope, PPG; ii) Empatica E4 Wristband: accelerometer,
PPG; iii) Muse S Headband: accelerometer, gyroscope. Hence, the objective is to infer and estimate a person’s
energy expenditure in a particular moment (the ground truth values come from VO2 Master Analyzer Face
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Table 1. Summary of datasets, source and target domains, modalities used, and the performed inferences. C stands for
classification and R stands for regression.

Dataset Source Targets Modalities Inferences

WENET Italy
India, China,
Mexico, Paraguay,
UK, Denmark

Location, Bluetooth, Wifi,
Cellular, Notifications, Proximity,
Activity Type, Steps, Screen Events,
User presence, Touch events, App events

Mood (C) [49]
Social Context (C) [36, 46, 52]

WENET Mongolia
India, China,
Mexico, Paraguay,
UK, Denmark

Location, Bluetooth, Wifi,
Cellular, Notifications, Proximity,
Activity Type, Steps, Screen Events,
User presence, Touch events, App events

Mood (C) [49]
Social Context (C) [36, 46, 52]

WEEE EarBuds Empatica Accelerometer, Photoplethysmography EEE (R) [6]

WEEE EarBuds Muse Accelerometer, Gyroscope EEE (R) [6]

Mask: VO2 (ml/kg/min) as the gold standard ground truth1), based on data from wearable data. Source and target
domain combinations were determined based on the availability of common sensors in wearable devices. Further,
more details regarding the used features can be found in Appendix B.

4.3 Domains and Inference Tasks
Our intention here is to delineate the various experimental settings encompassing multiple datasets and inferences.
As depicted in Table 1, our focus is on two specific datasets: WENET and WEEE.

WENET dataset was employed to facilitate domain transfer across distinct countries, a problem setting
motivated by previous studies [7, 49]. Accordingly, we considered Italy (𝑁𝑖𝑡𝑎𝑙𝑦=151,342 from 240 users) and
Mongolia (𝑁𝑚𝑜𝑛𝑔𝑜𝑙𝑖𝑎=94,006 from 214 users) as source domains. This was done because these two countries have
larger datasets. Multiple target domains, namely India (𝑁𝑖𝑛𝑑𝑖𝑎=4,233 from 39 users), China (𝑁𝑐ℎ𝑖𝑛𝑎=22,289 from 41
users), Mexico (𝑁𝑚𝑒𝑥𝑖𝑐𝑜=11,662 from 20 users), Paraguay (𝑁𝑝𝑎𝑟𝑎𝑔𝑢𝑎𝑦=9,744 from 28 users), UK (𝑁𝑢𝑘=26,688 from 72
users), and Denmark (𝑁𝑑𝑒𝑛𝑚𝑎𝑟𝑘= 10,010 from 24 users) were considered for each source domain. These countries
have comparatively smaller datasets compared to sources. This also shows how the technique performs well
with limited target data. Consequently, our analysis spanned a total of 12 source-target pairs within the WENET
dataset. For each pair, we undertook two classification tasks previously defined: a two-class mood inference
(positive vs. negative) [49] and a two-class social context inference (alone vs. with others) [36, 46, 52]. Both these
tasks hold significance in the context of digital health and mobile food diary applications. It is worth noting that
the ground truth for the inferences are: i) mood, which is subjective, and silver-standard 2 because it is captured
with self-reports; and ii) social context, which is more objective, but still silver-standard because of self-reports.

Our approach with the WEEE dataset revolved around domain transfer across diverse devices sharing common
sensor modalities. This task is also motivated by prior work that highlights the importance of domain adaptation
for devices across body positions [13, 22]. It is noteworthy that not all devices in the original dataset possess
identical sensors. For instance, the Nokia Bell Labs earbuds comprise an accelerometer, gyroscope, and PPG
sensor, while the Empatica E4 wristband lacks a gyroscope. Consequently, our experiments encompass two setups:
1In machine learning terms, the term "gold-standard" refers to the highest level of accuracy or reliability in ground truth labels or annotations.
Gold-standard annotations are often obtained using methods that are considered highly reliable or accurate, such as expert manual annotations,
precise measurements, or comprehensive and well-established criteria [21, 82].
2In machine learning terms, the term "silver-standard" is used to describe annotations or ground truth labels that are of lower accuracy
or reliability compared to the gold-standard because of uncertainty, bias, and/or noise. They are still considered useful and informative,
and are commonly used in inferences. These annotations might be obtained through less stringent methods, such as automated algorithms,
self-reports, surrogate measures, or indirect observations [21, 82].
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firstly, treating EarBuds (𝑁𝑒𝑎𝑟𝑏𝑢𝑑𝑠=9,226 from 17 users) as the source domain and Empatica (𝑁𝑒𝑚𝑝𝑎𝑡𝑖𝑐𝑎=9,226 from
17 users) as the target domain, utilizing accelerometer and PPG data from both devices; secondly, considering
EarBuds as the source domain and the Muse S headband (𝑁𝑚𝑢𝑠𝑒=9,226 from 17 users) as the target domain,
leveraging accelerometer and gyroscope as the sensing modalities. It is worth noting that data from all devices
were collected simultaneously from different body positions, hence the same number of data points. In both
setups, we adopted energy expenditure estimation [26] as the target inference, constituting a regression task.
This inference is further characterized and validated in prior studies [5, 6, 19, 61]. It is worth noting that the
ground truth here is the gold standard for energy expenditure estimation.

5 RQ1: USING STATISTICAL TESTS TO QUANTIFY DISTRIBUTION SHIFT OF SENSORS

5.1 Methodology
The aim of this analysis is to provide empirical evidence for the rationale behind the development of a multi-
branch architecture. In accordance with previous studies [78], two primary methods for quantifying distribution
shift are statistical tests [58] and inference performance metrics [49]. Statistical test-based techniques are known
for their cost-effectiveness and ability to offer a general estimation of the shift for each sensing modality [58].
Thus, we could employ common statistical tests such as t-test [38], PERMANOVA and PERMDISP [58], and
Cohen’s-d [16] to assess the distribution shift of sensor modalities for each target inference. In this context, after
an initial analysis of these tests, we selected Cohen’s-d for our analysis due to its relatively linear distribution
of values [7, 49, 58], within a range approximating 0 and 1. Most importantly, it allowed the best downstream
performance for domain adaptation. In addition, the rule of thumb of 0.8 or above: large effect size, 0.5: moderate
effect size, and 0.2: small effect size allows easy interpretation [16]. This characteristic facilitated the utilization
of normalized values in our architecture for 𝜆𝑚 (Section 3.3). Please note that we use the terms distribution shift
or shift between two modalities interchangeably to refer to Cohen’s-d from this point onward.
For the WENET dataset, our initial step involved calculating Cohen’s-d values for all captured features.

Subsequently, we aggregated these values by computing the mean for each modality (e.g., wifi, steps, proximity,
location, etc.). By designating Italy and Mongolia as source domains, we plotted the results for other target
domains (Figure 4 and Figure 5). This approach enabled us to comprehend how modalities could exhibit varying
degrees of distribution shifts for the same source and target domains. The underlying concept is to demonstrate
that aggregating features by modalities facilitate the differentiation of high and low levels of distribution shifts.
Continuing, we proceeded to visualize Cohen’s-d values for all features, assigning distinct modality-specific
colors to each bar for enhanced clarity (Figure 6). This visualization aimed to provide insights into whether
distribution shifts often emanate from the same set of modalities or if there are instances of outliers with high
Cohen’s-d values from specific modalities exhibiting relatively low levels of distribution shift overall. Due to
space limitations, we only show the distribution for the case when Italy is the domain, and India is the target
domain.
For the WEEE dataset, we did a similar analysis. We aggregated Cohen’s-d values by computing the mean

for each modality (e.g., acc, ppg, gyro — Figure 7). It is worth noting that, in the setup of transferring from
EarBuds to Empatica, only accelerometer and PPG data are available. In the other case of EarBuds to Muse, only
accelerometer and gyroscope data are available as common features. Continuing, we proceeded to visualize
Cohen’s-d values for all features, assigning distinct modality-specific colors to each bar for enhanced clarity. This
was done separately for pairs EarBuds and Empatica (Figure 8) and EarBuds and Muse (Figure 9).

5.2 Results
For WENET, Figures 4 and 5 present the quantification of distribution shift using Cohen’s-d values, which indicate
the effect size. The x-axes represent modalities, while the y-axes show the shift. Each modality is color-coded to
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Fig. 4. Average Cohen’s-d values for modalities. Italy is the source domain.

Fig. 5. Average Cohen’s-d values for modalities. Mongolia is the source domain.

Fig. 6. Cohen’s-d Values Italy and India, sorted in descending order. Modalities are marked in different colors.

represent the target domain. Notably, the figures reveal that various countries have diverse modalities that exhibit
the highest and lowest distribution shifts compared to Italy. For instance, WiFi is prominent for India and the UK,
proximity for China and Denmark, screen for Mexico, and touch for Paraguay. This pattern remains consistent
when the source is Mongolia, except for touch in Mexico and Denmark, and WiFi in Paraguay. Moreover, when
analyzing shifts within the target countries, the values for different modalities contrast. For instance, with Italy
as the source, the target domain India exhibits WiFi and steps with a Cohen’s-d of around 0.5 (medium effect
size). Conversely, all modalities such as app, screen, user, and activity have values below 0.1 (very small effect
size), indicating minimal distribution shift. Similar trends are observed for other countries, even when Mongolia
is the source. However, it is important to note that these diagrams do not account for individual features within
modalities, which could have high distribution shifts, but their impact might be mitigated by numerous other
features within the same modality with low shifts. This aspect is demonstrated in Figure 6, where the distribution
shift of each feature for source Italy and target India is plotted, with colors denoting modalities. While we can not
visualize all such features across various source-target domain pairs, we have identified a considerable number of
such cases that highlight significant shifts despite the overall low shift in the modality.
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Fig. 7. Average Cohen’s-d values for
modalities. EarBuds is the source domain

Fig. 8. Cohen’s-d values for EarBuds
and Empatica, sorted in descending
order. Modalities are marked in differ-
ent colors.

Fig. 9. Cohen’s-d values for EarBuds and
Muse, sorted in the descending order.
Modalities are marked in different colors.

Moving to the WEEE dataset, in Figure 7, we illustrate the modality-specific shifts for the source-target
pairs of Earbuds and Empatica, as well as Earbuds and Muse. For the EarBuds and Empatica pair, it is evident
that accelerometer features exhibit a substantial shift (Cohen’s-d of ≈1—indicating a large effect size), whereas
PPG features demonstrate only a smaller shift (Cohen’s-d of ≈0.2—reflecting a small effect size). Similarly, a
contrasting pattern is observed for the EarBuds and Muse pair, with accelerometer and gyroscope modalities
showcasing noticeable shifts. Notably, even the gyroscope exhibits a considerable shift in this context (Cohen’s-d
around 0.6—indicating an above-medium effect size). To delve deeper into this analysis, we present feature-
specific shifts in Figure 8 and Figure 9. Regarding the EarBuds and Empatica pair, fewer outliers are observed
compared to the modality-specific pattern. Most features with above-medium effect sizes primarily originate
from the accelerometer, while PPG features tend to exhibit small to medium effect sizes, indicating smaller shifts.
Conversely, in the case of the EarBuds and Muse pair, the features exhibit a more mixed distribution, deviating
from the modality-specific shifts highlighted in Figure 7.

In summary, in answering RQ1, the statistical analysis suggests that it might be possible to categorize features
into groups with high, medium, or low distribution shifts based on modalities or by considering mixed feature
groups derived from multiple modalities with prominent effect sizes. These insights directly address the design of
the architecture that we use to answer RQ3, where we propose the use of multiple branches for distinct feature
groups, as detailed in Section 3.2.

6 RQ2: DOMAIN ADVERSARIAL TRAINING WITH MULTIMODAL SENSING FEATURES

6.1 Methodology
As the next step, we performed domain adversarial training using the base architecture described in Section 3.1.
Our experiments were implemented in Python, with TensorFlow [1], Keras [14], and PyTorch [62]. The architecture
consists of an encoder without considering the multimodality of the data. Our dataset splitting involved separating
training (70%) and testing (30%) sets to ensure non-overlapping users, facilitating leave-k-out cross-validation
[31]. We conducted five such random training and testing splits to ensure robustness and reported the average
results. This experimental setup is similar to the approach proposed in [13], with the distinction that we employed
processed tabular features from multiple modalities, similar to [54, 82], instead of the raw sensor values with a
feature extractor.

For the WENET dataset, we initiated our analysis by training models on the training sets for Italy and Mongolia
as source domains. Our model architecture was designed to infer Mood and Social Context, with intermediate
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layer sizes of 128, 128, and 64, all with the ReLU activation [4]. Dropout [74] was used with rates of 50%, 50%, and
20% to mitigate overfitting. We used sigmoid activation [20] and binary cross-entropy loss function [80], suitable
for the two-class nature of our inferences. Adam optimizer [39] and a batch size of 32 was chosen. We also
implemented early stopping to prevent overfitting after five epochs of non-improving validation loss within {0,
300} epochs. Performance evaluation employed the area under the receiver operating characteristic curve (AUC)
with macro averaging, which considers class imbalance [7, 49]. Evaluation of the models began by assessing the
performance of the Source model on the Source testing set (S->S). These results were averaged across the five
iterations. Subsequently, we evaluated the Source model on the Target datasets (S->T). Due to multiple targets
for each source, we averaged the results. We also fine-tuned the source model on target training sets with transfer
learning and evaluated on the target domain testing set (S->T (w/ TL)). Note that this setup is not unsupervised
and needs labels in the target domain. We then proceeded with domain adversarial training (DANN [24]), as
outlined in Section 3.3—Step 3a, where we first trained the encoder (with layer sizes 128 and 64) and later the
target classifier (with intermediate layer sizes 64 and 32) and domain classifier (with intermediate layer sizes 64
and 32). These classifiers employed sigmoid activation and binary cross-entropy loss at their respective final
layers. A fixed 𝜆 = 1 was used for gradient reversal during encoder training. Data with labels from the source
domain contributed to the loss for both domain and target classifiers during training, while unlabelled target
domain data only contributed to the domain classifier loss.

Even for WEEE dataset, the methodology was similar to that of the WENET dataset, albeit with smaller models
due to the dataset’s size. We trained models for EarBuds, utilizing accelerometer and PPG data, and for EarBuds
with accelerometer and gyroscope data. These modality combinations were chosen to allow domain adaptation
for two devices, as described in Table 1. The models were designed to infer energy expenditure estimation, with
intermediate layer sizes of 64 and 32, and using the ReLU activation function. Dropout with rates of 30% and 20%
was used for regularization. The mean squared error loss function was utilized given that it is a regression—Adam
optimizer and a batch size of 16 facilitated model training. Early stopping was also implemented. The evaluation
process mirrored that of the WENET dataset. DANN, following the process outlined in Section 3.3, involved
training the encoder (with layer sizes 64 and 32) and later the target regressor (with intermediate layer size 32)
and domain classifier (with intermediate layer sizes 32 and 16). The target regressor employed mean squared
error, and the domain classifier employed sigmoid activation and binary cross-entropy loss at their final layers.
Hence, in summary, the inferences that we conducted across both datasets are given below.

• S->S: performance of the model trained in the source domain, for the source testing set. This provides an
upper bound for the possible results in the target domain.

• S->T (w/ TL): performance of the model trained in the source domain for the target testing set after
fine-tuning the target training set with transfer learning. This setup assumes that labels are available in the
target domain, hence could lead to higher performance and act as another ceiling for performance. It is also
worth noting that ground truth labels used in training models can be gold-standard or silver-standard as
mentioned in Section 4. In WENET, ground truth is the silver standard as they are self-reports that can be
noisy. However, mood reports can be subjective and social context reports are more objective, potentially
leading to differences in the accuracy and noisyness [50]. In WEEE, the ground truth is the gold standard.

• Random: performance of a random classifier/regressor on the target testing set.
• S->T: performance of the model trained in the source domain for the target testing set.
• DANN [24], MMD [13], ADDA [76]: performance of the model trained in the source domain and
unlabelled target data (training set), on the target testing set. Methods used include domain adversarial
training (DANN) as suggested in earlier sections and [24]; maximum mean discrepancy (MMD) loss-based
adaptation as suggested by [13]; and adversarial discriminative domain adaptation (ADDA) as suggested by
[76]. These techniques have been shown to perform reasonably in sensing-based inference tasks [13, 65, 82].
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Table 2. Results for classification tasks. Results are presented as average AUC scores (higher the better). TL refers to transfer
learning where labelled target domain data are available.

Dataset WENET WENET WENET WENET
Inference Mood Mood Social Context Social Context
Source Italy Mongolia Italy Mongolia
Targets Avg. of Countries Avg. of Countries Avg. of Countries Avg. of Countries

RQ2
Random 0.45±0.12 0.46±0.08 0.42±0.14 0.44±0.11
S->S 0.61±0.04 0.59±0.06 0.63±0.03 0.65±0.04
S->S – Meegahapola et al. [49] 0.55±0.05 0.49±0.08 - -
S->S – Mader et al. [46] - - 0.66±0.02 0.73±0.06
S->T 0.46±0.08 0.48±0.07 0.44±0.03 0.49±0.08
S->T (w/ TL) 0.51±0.05 0.52±0.06 0.56±0.05 0.55±0.07
S->T – Meegahapola et al. [49] 0.48±0.01 0.50±0.00 - -
S->T – Mader et al. [46] - - 0.57±0.06 0.55±0.08
MMD [13] 0.49±0.08 0.54±0.08 0.51±0.04 0.52±0.09
ADDA [76] 0.49±0.11 0.50±0.07 0.51±0.08 0.51±0.06
DANN [24] 0.52±0.07 0.53±0.02 0.52±0.03 0.54±0.05

RQ3
Ours (𝜆 = 1, Setup1) 0.55±0.05 0.52±0.06 0.55±0.06 0.57±0.05
Ours (w/ 𝜆𝑚 , Setup1) 0.56±0.04 0.53±0.07 0.56±0.04 0.57±0.05
Ours (w/ 𝜆𝑚 , Setup2) 0.58±0.04 0.54±0.03 0.55±0.05 0.55±0.03

In addition to the aforementioned results, we have also included the state-of-the-art performances for S->S
and S->T, as reported in the original papers that proposed these specific tasks, using the same datasets. Mood
inference results were extracted from [49], social context inference from [46], and the EEE from [6]. It is important
to note that the original study conducted experiments using only five countries for social context inference.
Consequently, the S->T performance reported therein cannot be directly compared with the performance
presented here. Furthermore, all the aforementioned papers achieved the best-performing models using classic
machine learning techniques, such as random forest classifiers and XGBoost models. While these models yield
high performance on the datasets, they cannot be directly applied to the domain adaptation algorithms under
investigation in this work.

6.2 Results
Table 2 presents the classification outcomes for the WENET dataset, for mood and social context inferences. The
results show the model’s performance under different scenarios. Specifically, S->S showcases how the model
performs when evaluated on the source testing set. The inferred values fall within the range of 0.59 to 0.61
AUC. Although the performance in the source domain is not notably high, this aligns with trends observed in
recent research focused on mental well-being and contextual inference using multimodal mobile sensing datasets
[49, 85]. Despite not achieving high levels of performance, these results still provide a foundation for investigating
domain adaptation techniques, where even small enhancements in performance on target domains are crucial.
S->T is where the model trained on the source domain is evaluated on the target domain’s testing set. As expected,
performance experiences a decline across all four inferences compared to S->S. With transfer learning fine-tuning
(S->T (w/ TL)), the performance improves across all four inferences as expected because it uses labels in the
target domain. Interestingly, the application of DANN leads to further performance enhancements across social
context inferences while showing a slight performance decline compared to S->T (w/ TL) for mood inference.
This could be because mood labels are more subjective; hence even having labels in the target domain is less
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useful, whereas DANN leads to marginally better results. However, for social context, which is more objective
ground truth, having labels led to increased performance, even more than the adapted model with DANN. Hence,
while further work is needed, this could suggest that the label source quality and objectivity might have an effect
on fine-tuning or domain adaptation performance.
Table 3 presents the regression outcomes for the WEEE dataset, focusing on energy expenditure estimation

(EEE) inference. In this context, EarBuds serves as the source domain, while Empatica or Muse serves as the target
domain. The source domain performance (S->S) yields MAE values of 0.62 and 0.59 for EarBuds, representing
the desired ceiling performance. The random baseline, on the other hand, delivers poor results. In the S->T
scenario, the performance exhibits a reduction of approximately 0.17 MAE and 0.21 MAE for Empatica and
Muse, respectively. Notably, the application of transfer learning (S->T (w/ TL)) results in improved performance
compared to DANN. This stands in contrast to mood inference in the WENET dataset results, where DANN
marginally outperformed transfer learning for mood inference. The divergence in results can be attributed to the
nature of labels; the WENET dataset employs silver standard labels derived from user self-reports, however, with
high and low subjectivity for mood and social context, respectively, while both labels could also be susceptible to
noise. On the other hand, the WEEE dataset leverages gold-standard labels derived from lab-based measurements.
Our findings underscore that while transfer learning with silver standard labels, especially when having subjective
ground truth, does not universally guarantee performance gains, it could potentially provide an alternative ceiling
performance (a baseline for the maximum performance the model could reach). It is noteworthy, however, that
transfer learning necessitates the availability of labels in the target domain, which is not the primary scenario we
are addressing.
In conclusion, when tackling RQ2, our exploration revealed that domain adversarial training applied to

multimodal mobile sensing datasets translates to enhanced performance compared to S->T setting. Notably, for
mood inference in the WENET dataset, the observed increase even surpassed/equaled that achieved through
transfer learning. This phenomenon can likely be attributed to the presence of silver standard, and potentially
subjective labels in this dataset. On the other hand, when examining the WEEE dataset, DANN contributed to
improved performance, although not reaching the same level as transfer learning, which was to be expected.
This discrepancy could be attributed to the presence of high-quality gold standard labels available in both the
source and target domains, which were effectively utilized for training models. This calls for further research in
this direction in the future.

7 RQ3: MULTI-BRANCH DOMAIN ADVERSARIAL TRAINING
RQ3 in our study is motivated by the nuanced findings from both RQ1 and RQ2, which highlight the variable
degrees of domain shift across different modalities. These insights suggest that distinctively treating modalities or
feature groups could yield improved performance. This hypothesis stems from the understanding that modalities
with lesser distribution shifts may benefit from minimal adaptation, while those with higher shifts might require
more intensive adaptation strategies. A single encoder structure, as used in DANN, does not allow for this level
of tailored adaptation across modalities. Therefore, RQ3 explores the concept of multiple encoder branches, each
adjusted for varying degrees of shifts, to address these disparities. This approach aims to optimize the adaptation
process by treating each modality according to its specific domain shift characteristics, potentially leading to
more effective overall performance.

7.1 Methodology
7.1.1 Experiments with Multiple Branches. The next step is to replace the encoder with multiple branches as
described in Section 3.2. We considered experimental approaches with two distinct setups. These setups were
based on the results we obtained for experiments in Section 5. There, we discussed how distribution shift could be
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quantified by aggregating features based on modalities (e.g., activity, steps, wifi, location, etc.) or by aggregating
based on feature level shift as quantified by statistical tests (e.g., top 33% of features, bottom 33% of features, and
the rest, etc. regardless of the modality).

Table 3. Results for regression tasks. Results are presented asmean absolute
errors (MAE) (the lower the better).

Dataset WEEE WEEE
Inference EEE EEE
Source EarBuds EarBuds
Target Empatica Muse

RQ2
Random 1.35±0.31 1.41±0.43
S->S 0.62±0.11 0.52±0.06
S->S – Amarasinghe et al. [6] - 0.61±N/A
S->T 0.79±0.15 0.73±0.10
S->T (w/ TL) 0.67±0.07 0.56±0.04
S->T – Amarasinghe et al. [6] - -
MMD [13] 0.71±0.05 0.69±0.06
ADDA [76] 0.76±0.05 0.70±0.16
DANN [24] 0.73±0.05 0.65±0.06

RQ3
Ours (𝜆 = 1, Setup1) 0.74±0.04 0.62±0.06
Ours (w/ 𝜆𝑚 , Setup1) 0.69±0.06 0.60±0.03
Ours (w/ 𝜆𝑚 , Setup2) 0.69±0.05 0.64±0.03

Setup1—Branches Based on Modalities: In
the WENET dataset, there are over ten
modalities. Having separate branches for
all modalities leads to a complex optimiza-
tion problem. Hence, in this paper, we fo-
cus on having three branches for which we
were able to obtain decent results. Beyond
the three branches, we did not obtain good
results, as it became a difficult optimization
given the dataset size and the challenging
nature of the task, as described in Section 6.
Hence, when having three branches, for
each target country, we used the modality
with the highest shift as one branch, the
modality with the lowest shift as another
branch, and the rest of the modalities in
one branch, as visualized in Figure 2. When
considering modalities, we normalized the
highest Cohen’s-d modalities 𝜆𝑚 to 1, and
if the Cohen’s-d of the lowest modality was
below 0.2 (below small effect size), normal-
ized it such that it is 𝜆𝑚 = 0 (all source-
target pairs had below 0.1 modalities, as shown in Figure 4 and Figure 5). 𝜆𝑚 for the set of features in the middle
was normalized to a suitable value, as described in Section 3.3—Step 3c. We only have two modalities in the
WEEE dataset for both inferences. Hence, we used two branches and again normalized between 0 and 1 to obtain
the 𝜆𝑚 values for the two modalities, following Section 3.3. Finally, for this setup, we first conducted experiments
with 𝜆 = 1 for all branches (𝜆 = 1, Setup1). Then, we used different 𝜆𝑚 values for branches based on the shift and
conducted experiments (w/ 𝜆𝑚 , Setup1).

Setup2—Branches Based on Feature Group: In both datasets, we could sort all features in descending order based
on shift for each source-target pair. Then, we could consider three groups similar to Setup 1, by considering 33%
of data with the highest shift, 33% of data with the lowest shift, and finally, the rest of the 33% of data in the
middle. While the percentage could be changed, we did not delve deeper into that in this analysis and focused
on obtaining equal splits for the three feature sets. In Figures 6, 8, and 9, these splits are marked with vertical
dotted lines. Finally, for this setup, we used different 𝜆𝑚 values for branches, based on the shift, as suggested in
Section 3.3 (w/ 𝜆𝑚 , Setup2).

7.1.2 Experiments with Multiple Modalities in High and Low Branches for Setup1. An identified limitation of
Setup1 is evident in instances where a single modality, representing branches with the highest or lowest shift,
encompasses only a limited number of features. For instance, when the source domain is Italy and the target is
India, the modality with the highest shift, ‘wifi’ (𝜆0 = 1), includes merely seven features. In contrast, the ‘activity’
modality with the lowest shift contains eight features (𝜆2 = 0), while the remaining features (over 80) fall within
the moderate shift range (𝜆1 = 0.62). This scenario results in an imbalance among the branches. However, such
an imbalance does not manifest in Setup2, where the equitability of sizes across branches is maintained. We
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performed another experiment to assess the potential implications of this limitation on performance. Specifically,
we introduced additional modalities to the high and low-shift branches. To accomplish this, we define 𝛼 to
indicate the number of modalities present within the high and low shift branches. Thus, 𝛼 = 1 corresponds to
one modality each in the high and low branches, 𝛼 = 2 signifies two modalities each, 𝛼 = 3 represents three
modalities each within these branches, and so on. Subsequently, we conduct a series of experiments similar to
those described in Section 7.1.1, systematically varying the 𝛼 values. This experimentation enables us to gauge
the influence of modifying the number of modalities on performance. Given the inadequacy of modalities within
the WEEE dataset, it is important to underscore that this specific experiment pertains only to the WENET dataset.

7.2 Results

Fig. 10. Inference results for various 𝛼 values.

7.2.1 Experiments with Multiple Branches. The results for the
WENET dataset are presented in Table 2. When 𝜆 is set to 1,
indicating domain adversarial training with uniform 𝜆 values
across all branches, the performance exceeds that of DANN in
all instances except for mood inference with Mongolia as the
source. Within Setup1, the introduction of distinct 𝜆𝑚 values
for branches, determined by modality distribution, yields minor
performance enhancements across all scenarios compared to the
uniform 𝜆 = 1 configuration, except for social context inference
with Mongolia as the source where both setups yielded an AUC of
0.57. Moreover, the superiority of Setup1 over Setup2 is not clear,
as each configuration displayed better performance in different
inferences. However, a discernible trend emerged with mood
inference, which is a more subjective task reliant on nuanced
labeling, indicating that fine-tuning with labels (S->T (w/ TL))
failed to elevate performance, even relative to DANN and our
proposed approach. Conversely, transfer learning achieved performance on par with our method for the objective
ground truth of social context inference, again underscoring the possible impact of ground truth nature on
inference accuracy as discussed in Section 6.2. From another sense, this highlights that our technique achieves
decent performance, even compared to transfer learning, for social context inferences in the WENET dataset.

The findings for the WEEE dataset are shown in Table 3. Here, our approach once again outperformed DANN
and other baselines across both inferences. However, the performance does not surpass that of fine-tuning with
transfer learning. This discrepancy can be attributed to the presence of gold-standard ground truth labels in this
dataset, allowing fine-tuning to exhibit superior performance. Furthermore, distinguishing between the efficacy
of Setup1 and Setup2 remains inconclusive, despite Setup1’s superior performance for the Earbuds and Muse
source-target pair. As mirrored in the results for the WENET dataset, even here, employing diverse 𝜆 values for
the branches proved to be more effective than adopting a uniform 𝜆 = 1 strategy. Thus, the adjustment of 𝜆 based
on branch-specific shift statistics yielded more better results.

7.2.2 Experiments with Multiple Modalities in High and Low Branches for Setup1. The outcomes of the experiment
conducted to explore the effects of varying 𝛼 values are presented in Figure 10. The results exhibit distinct
patterns across different inferences and source-target domain pairings. In specific scenarios, such as the ’Italy-All
Mood’ and ’Mongolia-All Social Context’, employing 𝛼 = 2 yielded slightly superior results compared to when 𝛼

was set to 1. Similarly, for the ’Mongolia-All Mood’ inference, 𝛼 = 2 yielded results similar to those of 𝛼 = 1, while
𝛼 = 3 led to notably improved performance. Intriguingly, in all instances, setting 𝛼 = 4 resulted in consistently
subpar performance. These findings underscore the nuanced nature of determining optimal configurations
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for the number of branches and the number of modalities within each branch during model training. There
appears to be no universal formula for these selections, as their efficacy depends on the specific inference and
source-target domains. Nevertheless, a recurring trend across the analyses is that employing multiple branches
with an appropriately chosen 𝛼 and 𝜆 consistently outperforms utilizing a single encoder with fixed 𝜆, except in
very few experiments (e.g., WEEE Earbuds-Empatica DANN=0.73 performed better than 𝜆 = 1, Setup1; WEEE
Earbuds-Muse 𝜆 = 1, Setup1 performed better than w/ 𝜆𝑚 Setup2; WENET Mood w/ source Mongolia DANN =
0.53 performed similar to 𝜆 = 1, Setup1 and w/ 𝜆𝑚 , Setup1).
As a summary, in answering RQ3, the analysis shed light on the nuanced interplay between diverse factors

such as the nature of ground truth (gold/silver standard, subjective/objective), modality distributions and related
distribution shifts, and branch-specific adaptation dynamics. Hence, the conducted experiments provide evidence
that incorporating multiple branches for different feature sets, based on either modality or distribution shift-based
feature groups, yields improved performance in unsupervised domain adaptation. The results for both theWENET
and WEEE datasets consistently indicate that this approach outperforms baseline methods and enhances domain
adaptation performance. Further, the findings emphasize the importance of adaptability in adjusting parameters
such as 𝜆 and 𝛼 based on specific contexts, inference tasks, and source-target domain pairings. This adaptability
proves crucial in effectively harnessing the advantages of domain adversarial training, highlighting its potential to
significantly enhance model generalization and performance across diverse multimodal mobile sensing datasets.

8 DISCUSSION

8.1 Implications
The use of multi-branch encoders with varying lambda values in domain adaptation carries both modeling and
practical implications. First, we discuss a few modeling implications related to our proposed approach.

(1) Adaptation Strategy Customization: The insights drawn from the experiments underscore the importance
of adopting good adaptation strategies. The observed performance improvements achieved through tuning
parameters such as 𝜆 and 𝛼 values emphasize the importance of tailoring the training process to the specific
characteristics of the data and the nature of the inference tasks. The results highlight the need for flexibility in
adaptation techniques, acknowledging that different data modalities and inference tasks may demand distinct
strategies for optimal performance. This implication encourages researchers and practitioners to consider the
intricacies of the data and the problem domain when crafting adaptation methodologies, contributing to a more
effective approach to domain adaptation. Moreover, in some of our experiments that were not reported in the
study, we modified the annealing schedule of 𝜆 suggested by Ganin et al. [23, 24], by both doubling and halving
its rate to evaluate the impact on model performance. This adjustment aimed to discern whether variations in the
rate at which 𝜆 transitions from its initial to final value would affect the training dynamics or the model’s final
evaluation metrics, such as AUC in classification or MAE in regression. Our findings revealed that altering the
annealing schedule did not yield results with substantial or clear conclusions. Specifically, doubling the annealing
rate resulted in marginally lower training durations without commensurate benefits in model performance.
However, the observed differences in AUC and MAE were negligible, suggesting that while the rate of annealing
influences training time, it did not impact the model’s effectiveness according to these metrics. This could be a
matter of further exploration in the future. Finally, it is also worth noting that introducing separate parameters
across branches, as discussed in Section 7, led only to a minor increase in performance for both regression and
classification tasks. This observation prompts the question of whether the added complexity of this setup justifies
its implementation. We argue that it does, particularly considering that the maximum performance enhancement
observed for the WENET dataset, transitioning from S->S to S->T, was approximately 15% (See Table 2). In
this context, even a marginal improvement of 1% is reasonable. Future research could further investigate these
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findings across other datasets and tasks that may present less of a challenge, to determine this approach’s broader
applicability and benefit.
(2) Impact of Ground Truth Nature: The divergent performance trends observed across various inference tasks,
particularly distinguishing between subjective tasks like mood inference, more objective tasks like social context
inference, and gold standard ground truth-based tasks like energy expenditure estimation, provide evidence
that confirms the impact of ground truth nature on the domain adaptation model’s performance. These findings
highlight the intricate interplay between ground truth labels’ quality and reliability and domain adaptation
methods’ success. The outcomes showcase the need to take into account the inherent subjectivity and potential
noise in ground truth labels, particularly in contexts where human judgment and perception play a crucial role.
The implications underscore the pivotal role of domain adaptation not only in mitigating distribution shifts but
also in accommodating the peculiarities of the ground truth data.

In addition, the following practical implications could be considered in the deployment of this kind of model.
(1) Enhancing Real-world Applicability: The performance improvements obtained by the multi-branch adaptation
strategies have implications for real-world applications reliant on multimodal mobile sensing data. These findings
suggest that practitioners integrating data from diverse sensors could effectively enhance the utility of their
models by customizing their adaptation strategies based on the nuanced characteristics of the data and the
demands of specific inference tasks. This adaptability offers a concrete means to increase predictive accuracy in
data-driven applications such as mental well-being monitoring, personalized healthcare, and behavior analysis.
By fine-tuning adaptation techniques to the intricacies of data distributions and domain shifts, practitioners can
achieve more robust and meaningful outcomes in these critical domains.
(2) Guidance for Model Design: The insights obtained from the experiments offer valuable guidance for practition-
ers and researchers engaged in designing and deploying adaptationmodels formultimodal data. By comprehending
the impact of factors such as ground truth quality and modality distribution on model performance, informed
decisions could be made about the architecture and configuration of their models. This understanding streamlines
experimentation, minimizes trial-and-error efforts, and accelerates the development of effective adaptation
techniques tailored to specific use cases.

In conclusion, the theoretical and practical implications derived from the experimental results collectively un-
derscore the inherent flexibility, adaptability, and performance-enhancing capabilities of the M3BAT architecture
for unsupervised domain adaptation. These implications advance the understanding of adaptation techniques
and provide actionable insights for researchers seeking to use these strategies to improve model performance
and generalization capabilities. As the field of multimodal mobile sensing continues to mature, the insights
derived from these implications inform the development of sophisticated techniques that effectively address the
complexities of domain shifts in real-world settings.

8.2 Limitations and Future Work
In this paper, we have chosen to focus on DANN as our primary technique for multimodal mobile sensing, a
decision guided by its proven effectiveness in addressing domain shifts and enhancing dataset generalization.
DANN, as an adversarial-based method, is particularly suited for the variability and complexity inherent in
mobile sensing data. While domain adversarial training is a foundational approach, it is important to note that
it may not fully encapsulate the subtleties of real-world domain variations. This limitation, however, does not
undermine the value of DANN in our study; rather, it highlights the necessity of exploring a range of domain
adaptation techniques, both discrepancy-based and adversarial-based, as suggested by Goel et al. [28] and Wu et
al. [82]. Our choice of DANN is motivated by its balance between theoretical robustness and practical applicability,
making it a fitting starting point for our exploration into domain adaptation in mobile sensing. Nonetheless, we
acknowledge the importance of further research into other methods. Techniques stemming from adversarial
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discriminative domain adaptation [76], self-ensembling [64], and moment matching [63] represent potential
avenues for future investigation. These methods could offer alternative or complementary strategies for more
intricate and challenging domain shifts. By focusing on DANN, we believe that this study sets a foundational
groundwork for such explorations, emphasizing the need to continually evolve and enhance domain adaptation
methodologies.
The reliance on prior probability shift or label shift assumptions, though insightful, may not fully capture

the complexities of real-world data distributions. This challenge is not exclusive to ubiquitous and mobile
sensing—however, the unique data characteristics and complexities in this field underscore the need to investigate
alternative assumptions or methodologies in situations with ambiguous label distributions. This approach is
critical to more effectively address the diverse range of domain variations and challenges. Recent studies in
ubicomp have pointed out the necessity for such research [58]. It is also important to note that the techniques
we have proposed in this paper are not specifically designed to handle label shifts comprehensively, although
they partially address them. Therefore, future research should delve deeper into these aspects to enhance our
understanding and management of label shifts in these contexts. Further, the current methodology leverages
separate branches for individual sensor modalities (Setup1), a pragmatic approach that effectively considers the
unique characteristics of each modality. However, exploiting potential synergies between modalities remains a
compelling avenue for future research. Even though this was partially done with Setup2, the development of
more sophisticated multimodal fusion techniques could enable a more comprehensive integration of information
across different sensor sources, potentially yielding further performance gains. Scalability and applicability in
real-world deployment scenarios are two considerations for the practical utility of the technique. To this end,
future research should prioritize refining the method’s efficiency and robustness in diverse real-world settings.
Another limitation of our current approach in domain adversarial training is the requirement for a large,

well-labeled dataset from the source domain. This necessity arises because the effectiveness of domain adversarial
training hinges significantly on the model’s ability to learn comprehensive and generalized feature representations
from the source domain. These representations are crucial as they enable the model to perform well on the target
domain, which might differ substantially in terms of data distribution. A large dataset in the source domain
ensures a diverse range of examples, encompassing a wide variety of features and scenarios. This diversity is key
to training a robust model that can effectively reduce the domain discrepancy by aligning the feature distribution
of the source domain with that of the target domain. In our case, we specifically chose Italy and Mongolia in the
WENET datasets as our source datasets due to their extensive and diverse data pools. These datasets provide a rich
set of features and examples that aid in the development of a model capable of generalizing well to other countries.
Conversely, smaller datasets might not offer the same level of diversity and comprehensiveness, potentially
leading to a model that is less effective at generalizing across domains. This limitation is particularly pronounced
in domain adversarial training, where the goal is to learn from the source domain and to bridge the gap to a
potentially different target domain.

One more limitation is that we exclusively used Cohen’s-d to quantify distribution shifts. However, this choice
was made with careful consideration. We selected Cohen’s-d as our primary statistical method because all the
data we used, such as activity and app usage, are numeric (detailed in the Appendix). Cohen’s-d is effective for
this type of data. For the sensor data from the accelerometer and gyroscope in the WEEE dataset, we calculated
statistical features that reflect specific characteristics within time windows and then applied Cohen’s-d to these
features. In the case of the periodic PPG signal, we focused on extracting numeric features such as blood volume
pulse and heart rate. This makes Cohen’s-d a relevant and suitable choice for our analysis. It is also important to
note that Cohen’s-d, with values typically taking a range closer to 0-1, could be seen as a valuable metric for
approximately quantifying distribution shift, given that 𝜆 value also falls in the same range. However, Cohen’s-d
is not the only option that could be used for this purpose. In our previous research [58], we considered other
statistical measures like the t-statistic, permanova, and permadisp as alternatives for quantifying distribution
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shifts. Moreover, while we have clarified the scope of our analysis to focus on numerical statistical features across
both datasets, it is crucial to emphasize that more techniques beyond Cohen’s-d should be considered when there
are categorical input features. Therefore, future studies might benefit from exploring statistical measures beyond
Cohen’s-d, for such features. Hence, even though intuitive, the current mapping between Cohen’s-d and 𝜆 is
naive and rule-based, as described in Section 3.3.5. This could also be improved in future studies.

Expanding the technique’s versatility and usefulness could involve extending it to encompass transfer learning
and personalized model scenarios. This broader scope could cater to diverse application needs and user-specific
requirements, enhancing the technique’s adaptability and applicability. For example, given our findings, sometimes
it might make sense to do domain adaptation first and personalize a model to target users in a target domain rather
than directly personalizing a model. These directions need further investigation. Additionally, the technique’s
application has been primarily centered around time series data processed through time windows, as is customary
in this context across many studies [7, 49, 73, 82]. Future research could explore its adaptability when confronted
with raw time series data alongside convolutional neural network-based feature extraction, similar to how
multimodal data are handled in [85]. This expansion would offer insights into the method’s effectiveness under
different data representations and processing techniques. Furthermore, while the technique has been demonstrated
within the domain of mobile sensing, it could also be applicable to tabular datasets with multimodal attributes.
Future work could explore its utility across other domains. In conclusion, while the proposed domain adaptation
technique exhibits promising results, these limitations and future research lines provide impetus to advance
multimodal domain adaptation methodologies in the context of mobile sensing.

9 CONCLUSION
In this work, we have explored the effectiveness of a multi-branch domain adaptation technique for multimodal
mobile sensing data. Our experiments on the WENET and WEEE datasets highlight the adaptability of the
approach through parameter customization, leading to enhanced performance and generalization. The results
underscore the need for tailored adaptation strategies, while the distinction between subjective and objective tasks
emphasizes the role of ground truth quality. The technique’s potential for scenarios with limited labeled data and
its applicability to practical settings further demonstrate its significance. However, challenges remain, and future
research should focus on refining the technique’s scalability, real-world deployment, and fusion of multimodal
data. As mobile sensing gains momentum in various domains, this study contributes to the advancement of
unsupervised domain adaptation with M3BAT architecture, with a range of additional, real-world machine
learning applications.
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A WENET DATASET FEATURES [49]

Table 4. Summary of features extracted from sensing data, aggregated around activity self-reports using a time window.

Modality Description
Location radius of gyration, distance traveled, mean altitude

Bluetooth
[low energy,
normal]

number of devices (the total number of unique devices found), mean/std/min/max
rssi (Received Signal Strength Indication – measures how close/distant other
devices are)

WiFi connected to a network indicator, number of devices (the total number of unique
devices found), mean/std/min/max rssi

Cellular [GSM,
WCDMA, LTE]

number of devices (the total number of unique devices found), mean/std/min/max
phone signal strength

Notifications
notifications posted (the number of notifications that came to the phone),
notifications removed (the number of notifications that were removed by the
user) – these features were calculated with and without duplicates.

Proximity mean/std/min/max of proximity values

Activity time spent doing activities: still, in_vehicle, on_bicycle, on_foot, running, tilting,
walking, other (derived using the Google activity recognition API [30])

Steps
steps counter (steps derived using the total steps since the last phone turned on
at 10 samples per second), steps detected (steps derived using event triggered for
each new step captured on change)

Screen events
number of episodes (episode is from turning the screen of the phone on until the
screen is turned off), mean/min/max/std episode time (a time window could have
multiple episodes), total time (total screen on time within the time window)

User presence time the user is present using the phone (derived using android API that indicate
whether a person is using the phone or not)

Touch events touch events (number of phone touch events)

App events

time spent on apps of each category derived from Google Play Store [44, 70]:
action, adventure, arcade, art & design, auto & vehicles, beauty, board, books &
reference, business, card, casino, casual, comics, communication, dating,
education, entertainment, finance, food & drink, health & fitness, house, lifestyle,
maps & navigation, medical, music, news & magazine, parenting, personalization,
photography, productivity, puzzle, racing, role playing, shopping, simulation,
social, sports, strategy, tools, travel, trivia, video players & editors, weather, word,
not_found
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Table 5. Summary of the features used in the analysis.

Modality Description

Accelerometer Statistical features calculated using tsfresh [15]: sum_values, median, mean, length,
standard_deviation, variance, root_mean_square, maximum, absolute_maximum, minimum

Gyroscope Statistical features calculated using tsfresh [15]: sum_values, median, mean, length,
standard_deviation, variance, root_mean_square, maximum, absolute_maximum, minimum

Photoplethysmography Features derived using HeartPy [77]: bpm, ibi, sdnn, sdsd, rmssd, pnn20,
pnn50, hr_mad, sd1, sd2, s, sd1/sd2, breathingrate
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