UNBIASED SEMI-SUPERVISED LF-MMI TRAINING USING DROPOUT
SIBO TONG, APOORV VYAS, PHILIP N. GARNER, HÉRVE BOURLARD
IDIAP RESEARCH INSTITUTE, MARTIGNY, SWITZERLAND
ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE (EPFL), SWITZERLAND
(sibo.tong, apoorv.vyas, phil.garner, bourlard@idiap.ch)

OVERVIEW

Goals
• Unbiased Semi-supervised training for LF-MMI

Our approach
• Train a seed model using supervised data.
• Use seed model to generate supervision lattice for untranscribed data
 - Sample N hypotheses with dropout on and combine
• Minimize the MMI Loss on generated lattices

Main Result
• Fisher English: WER recovery of ~ 51.6% over regular semi-supervised LF-MMI training

EXPERIMENT SET UP

Dataset: Fisher English corpus
• Supervised (50 hours)
• Unsupervised (250 hours)

Acoustic Models:
• TDNN: 8 hidden layers, 450 hidden units, 0.2 dropout

Metric:
• Word Recovery Rate (WRR) = BaselineWER – SemisupWER
 BaselineWER – OracleWER

Baselines:
• Lattice based semi-supervised training

RESULTS: ANALYSIS (NUMBER OF DROPOUT SAMPLES N)

Figure 3: WER (%) of different semi-supervised training setup by varying the value of dropout samples N for (a) Acoustic Model (AM) only (b) Language Model (LM) only. The red line denotes the regular semi-supervised training approach.

• AM dropout analysis: Fixed N-Gram LM is used
• LM dropout analysis: RNN based LM with dropout on. AM dropout is off

RESULTS (WER ESTIMATION)

Table 2: Comparison between combined lattice and regular decoding lattice in WER(%). The 50% supervised system is used as baseline to calculate WRR.

• Most gains come from acoustic dropout
• Language model dropout provides mild improvement

CONCLUSIONS & FUTURE WORK

• Semi-supervised LF-MMI training with dropout on can be seen as unbiased risk minimization under uncertainty
• Dropout sampling can be applied to both AM and LM to improve the WER over the regular semi-supervised training framework
• In the future, we intend to extend to idea to other frameworks such as end-to-end training, and also work on reducing the time required for multiple times decoding

ACKNOWLEDGMENT

This research was supported by Swiss National Science Foundation project SHISSM, grant agreement 200021-175589, and the European Community H2020 SUMMA project No. 688139

SEMISUPERVISED TRAINING: FLOW CHART

Train Seed Model
Generate Supervision Lattice
Train Final Model

Figure 1: Flow-chart of the proposed method. Each network in the step 2 represents a random selection of the nodes. The white nodes denote dropped out units.

SEMISUPERVISED TRAINING: LOSS FUNCTION

Regular supervised loss:
\[\mathcal{L}_{\text{supervised}} = \max_{\theta} \sum_{i=1}^{L} \log \sum_{W \in \Omega} P(W|\theta) \]

Our proposed loss:
\[\mathcal{L}_{p} = \max_{\theta} \sum_{i=1}^{L} \log \left(\frac{E_{W \sim P(W|\theta)}}{P(W|\theta)} \right) \]

The regular semi-supervised LF-MMI loss can be seen as an approximation to the proposed loss with the equally likely word-sequences sampled from the decoding lattice

Figure 2: Lattices of a clearly spoken utterance: (a) pruned decoding lattice from a dropout-off acoustic model. (b) unbiased lattice from multiple dropout decoding samples.

- Decoding lattice with dropout-off can bias the training towards incorrect paths which deteriorates the supervision

RESULT: DROPOUT-OFF VS DROPOUT-ON (QUALITATIVE)

RESULT: DROPOUT-OFF VS DROPOUT-ON (QUANTITATIVE)

Table 1: Comparing averaged Word Error Rate (WER %) and Sentence Error Rate (SER %) between combined and regular decoding lattice.

- Better WER and SER indicate that dropout lattice helps reduce the effect of incorrect hypotheses when the model is confident
- Alternative paths are explored when the acoustic model is uncertain

Figure 4: Comparison between combined lattice and regular decoding lattice in WER(%). The 50% supervised system is used as baseline to calculate WRR.

Table 2: Comparison between combined lattice and regular decoding lattice in WER(%). The 50% supervised system is used as baseline to calculate WRR.

• Most gains come from acoustic dropout
• Language model dropout provides mild improvement

CONCLUSIONS & FUTURE WORK

• Semi-supervised LF-MMI training with dropout on can be seen as unbiased risk minimization under uncertainty
• Dropout sampling can be applied to both AM and LM to improve the WER over the regular semi-supervised training framework
• In the future, we intend to extend to idea to other frameworks such as end-to-end training, and also work on reducing the time required for multiple times decoding

ACKNOWLEDGMENT

This research was supported by Swiss National Science Foundation project SHISSM, grant agreement 200021-175589, and the European Community H2020 SUMMA project No. 688139