XXVI ENFPC/O274 1

Discriminacao Neural de EEtrons no Segundo Wel de Trigger do ATLAS

A. dos Anjos, R. C. Torres, B. C. Ferreira, T. C. Xavier, andlJ.de Seixas
Laborabrio de Processamento de Sinais/COPPE/EP/Universidade Federal ddeRianeiro,
Caixa Postal 68564 - Cidade Univeraita, Rio de Janeiro, RJ, 21945-970, Brazil

This paper presents an electron/jet discriminator system for operating &econd Level Trigger of ATLAS.
The system processes calorimetry data and organizes the regionsrestiethe calorimeter in the form of
concentric ring sums of energy deposition, so that both signal compaatibhigh performance can be achieved.
The ring information is fed into a feed forward neural discriminator. Timplementation resulted on a 97%
electron detection efficiency for a false alarm of 3%. The full discrimimatiwain could still be executed in less
than 50Qus

. INTRODUC AO Taxa de interagao

1 GHz LHC

Taxa de eventos

O experimento ATLAS [1], no CERN, & observar os 40 MHz [f\’{ﬁoj\]}(iciALf{XTiRAf?f))i Detectores
produtos das interégs pbton-pibton de alta luminosidade

(10°** cm~2s71) do colisionador LHC a procura de uma nova FIL{{%SEM St

fisica de interesse, sendo @son de Higgs a principal

busca do experimento. O detector possui um formato < 7°(100) kiz Derandos

cilindrico eé formado por subdetectores especializados, que, - -- - 5-ro- - t == i =] al =k TD“?SPZZZ‘EZ o (rODS)
sao (da parte mais interna para a mais externa): o detector [ ..o con leitura :
interno, que identifica a trajgtia das pafrtulas carregadas; LVL2 Dispositivos de pyp)
os calofmetros (eletromaggtico e hadbnico), que medem a 1 kHz armazenamento
energia e a &mara de mons, que observa essas pafas ”’F’IL%{L) ””” c - S

que interagem pouco com os subdetectores anteriores. A - puenoe [ Construtor ee"e“toi‘\mnazenalnenm e eventos

partir dessa composig, 0 ATLAS é capaz de identificar
as principais propriedades dos decaimentos dascpkas
geradasemcadacdis. e b oo

e

100 Hz Repositério de processos

Armazenamento dos dados

No LHC, pacotes de ptons i@o colidir na fredjéncia
de 40 MHZ' Ma§’ para a .IumanSIdade prOJetad~§ Pargg. 1: sistema de Filtragem de Eventos do ATLAS (figura retirada
0 experimento, s&@o produzidas cerca de 23 cOkS g [3)).
proton-poton inehsticas na mesma fré@ncia, gerando
uma taxa de aproximadamente 1 GHz. Com o interesse

de reduzir a alta taxa de eventos, foi desenvolvido, pargapalhaa no mesmo ambiente do LVL2 cirefinar ainda
0 experimento ATLAS, um sistema de filtragemnigger)  ais 5 selego feita, identificando os 100 eventos (taxa de
online [2] composto por s riveis conectados em cascata, 1 Hz) que séo gravados em fdia permanente. Para isso,
com complexidade € tempo de processamento CreSCENQSEE g reconstruir o evento a partir da informagde todos

O primeiro rivel de filtragem (LVL1), usa a informa@o g gyhdetectores. Omis do sistema de filtragem de eventos
proveniente dos calonetros e da @mara de r@ons para 45 ATLAS podem ser vistos na Figura 1.

reduzir a taxa inicial de eventos paraonmenos que 75 kHz
(esse valor podaratingir o limite de 100 kHz). Para alcancar
tal objetivo, o LVL1 sea implementado enmardware O

LVL1 também identificah asareas do detector onde houve A. Asele@o ektron/jato
maior deposigo de energia, chamadas de Regide Interesse
(Rols). Quando um evento de um candidato @tein (com

momento elevadd identificado pelo LVL1, o LVL2 usa toda

As Rols definidas pelo LVL1 Z usadas pelo segundo a granularidade do detector a fim de confirmar se este objeto
nivel de filtragem (LVL2) [4]. O LVL2 usa toda a fina € ou réao um ektron. O algoritmo que vem sendo a base de
granularidade do detector para reduzir a taxa de eventoggsenvolvimento do LVL2 para operar sobre a inforategos
recebida pelo primeiroivel, para 1 kHz. Para efetuar essa caloimetros e que tem como objetivo identificaétebnsé
tarefa, contét com uma rede de capacidade equivalente ghamado de T2Calo [2]. Eséeresponavel por extrair quatro
1000 CPUs de 4 GHz, quedip processar algoritmos de quantidades altamente discriminates a partir de uma dada
busca especializados com intuito de encontrar elementos quegiao de interesse indicada pelo LVL1. Essas quantidades
representem umidica de interesse. Finalmente, os eventosao en&o entreguea um algoritmo de hiptese, que realiza
aprovados pelo LVL2 sé@o apresentados ao terceirivel,  cortes, sendo capaz de distimgobjetos melhor que o LVL1.
chamadado de Filtro de Eventos (EF). Esteehde filtragem
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Os ektrons de momento elevado representam uma das
principais assinaturas d@son de Higgs, por issois objetos
de extrema impoéincia para o ATLAS. Essesé&tons 80
contaminados por jatos de partlas, pois o primeiro inel
nao consegue difererécios com a informégpo limitada que ) A . A
possui. E esperado que para cada 25 mil objetos definidos o () o I
como eétrons pelo LVL1, somente 1 seja realmente um ’
eletron. :

omwsma) e

Event 2 (Front EM layer) *t01,,, Event 2 (Middle Hadroric layer)
o)

Il. ADETECC AO EL ETRON/JATO NEURAL e,

Redes neurais [5] &m produzindo resultados bem
satisfabrios em experimentos desfca de altas energias [6, 7]. T
Esta &cnicaé muito robusta, deatil manutengo e resulta § DT e
numa separép melhor quando a aplicag se & em um ey Sz
espaco de entrada de elevada dirden&omo encontrado na
calorimetria do ATLAS).

P

Atualmente, os algoritmos de processamento utilizaélos s
divididos em duas etapas. A primeiearesponavel pela
extra@o das caractisticas de uma entrada com dimaas
elevada em um conjunto reduzido de @&gis altamente
discriminantes. Aps esta primeira etapa, as wis que
exprimem as caractisticas da entradade processadas por
um algoritmo de hiptese que & decidir sobre a natureza do
objeto analisado.

Event 2 (Back EM layer)

o,
Rsriy

FIG. 2: Deposigo de energia, de umétton fpico, nos caldmetros.

camadas dos calonetros do ATLAS. Considerando-se as
células em todas as 7 camadas, teremos um total de E an
para cada Rol identificada pelo LVL1.

O T2Calo &€ um exemplo de algoritmo de extéax; de . RS
(PreSampler) (Second EM Layer)

caracteisticas. Redes neurais podem ser implementadas ap —

- . T |
esse algoritmo para alcangar uma éficia de discriminap =Illllllllll= =
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Ao observarmos a forma que objetos interagem com o EEEEEEEEEEEEEEED
caloiimetro, & posével pensar em um algoritmo que melhor (Third EM Layer) First Hadronic Layer)

preserva as caractsticas das re@es de interesse [8]. A
Figura 2 mostra a interag de um ditron fpico com as
diversas camadas do cdlmetro. No lado esquerdo da figura,
vemos a deposip no caloimetro eletromaggtico e no da
direita observamos as camadas do ¢adetro haddnico. Em
média, cada Rol consiste em um conjunto de 13@lilas
espalhadas em diferentes camadas do icaéro.
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A elevada dimero do espaco de entrada requer a . . ..-.
utilizagdo de uma compactag F:3fi(i:iente. Neste tratc)]alho, BH‘HIIIIIIIH"I“
propde-se uma compactag em agis, que sex adaptada
as condides de granularidade variante da configaac FIG. 3: A extrago dos aéis em uma Rol nos calionetros do
dos caloimetros do ATLAS e ia aproveitar a topologia ATLAS.
da deposigo energtica dos objetos que interagem com
o caloimetro. Os afis de cada camada&e extrados
localizando-se a&ula de maior deposip de energia na As somas enefficas em afis €0 normalizadas da
camada e somando-se o valor dakitas conéntricas a este seguinte forma: para cada camada, calcula-se a soma da
ponto. A Figura 3 ilustra como extrair os&@sa de algumas energia de cadaétula e divide-se o valor da energia do
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primeiro anel por esta soma. A energia do segundo @nel R.0.C. for efjet discrimination

dividida pelo valor da soma menos a energia do primeiro anel.
A energia do terceiro anel, pela soma da energia total menos
energia do primeiro e segundoéis, e assim sucessivamente,
att que o Aimero de adis se esgote.E pos$vel observar
que, os valores enegticos nodiltimos aréis de cada camada,
aqueles que possuem ad@azsinal-rido menor, tefio 0 menor
fator de normalizago (a maior amplificggo). Para que isso
nao ocorra, se a energia de um anel estiver abaixo de um dad
limite a normalizagoé feita por uma constante.

100
|

O conjunto de aiis normalizados® entregues a uma rede

Electron detection efficiency (%)
90
]

neuralfeedforward(“back-propagation”) com 100 entradas, 5 o | ) / -
neudnios na camada escondida e inico neudnio de s&da. ! i [&— (Rings)100x5x1
é I |~ (T2calo/PcA) 14x14x
; | |- (Tecdio) 4x4x1
g i |--+— (T2Calo) Fischer
n RESULTADOS 8 — ,’ ‘,I (T2Qa|0) efgamma hypO—Athena
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Para representar a classe deétmins, foi utilizado um
conjunto de 22 mil dtrons, provenientes de simules
de ektrons simples e de decaimentos lde— ZZ — 4e~ . ) L
eH — ZZ — 2e +2u  Aproximadamente 7 mil jatos, FIQ. 4: Curvas ROC paraavias écnlca_s de dlsc[|m|nag usando o
gerados a partir de simulées de di-jet, foram usados. Essespre-processamento emé&is e as quantidades exttas pelo T2Calo.
jatos foram previamente aprovados por uma sinddado
LVL1, em sua configurao real de oper@p. Esses dados este sistema se torna adequado para o LVAZju o tempo

foram transformados em @is e normalizados. Metade do rocessamento disdoal para todo o LVL® de 10ms
conjunto de dados foi usado para treinar o sistema baseagg P Roalp

em r.ede_s neurais e a outra metade para testar a performanre Gl Tifing DisBOGGHS, PR « %)
do discriminador neural.

False Alarm (x 25kHz) - Jet background rate

- S F——

3000
|

Com o intuito de comparar a efégicia dos dois &todos de
extra@o de caractésticas (T2Calo e d@is), os mesmos dados
citados anteriormente foram processados pelo algoritmc
T2Calo. A s&da do T2Calo foi normalizada, retirando-se a
média e dividindo-se pelo desvio padr.

2500

2000

A Figura 4 compara os resultados, a partir das curvas
ROC (Receiver Operating Curyd9], entre \arias écnicas
de discrimina@o em conjunto com o prprocessamento em
areis e com o @-processamento usando as &eeis T2Calo.
Observamos que o sistema que possui a menor compactag
apresenta o melhor resultado, produzindo umaiiaqia de 9 |
falso-alarme 8 vezes menor que o algoritmo T2Calo (para ume ‘ ; H / Normalization
mesma efi@ncia de 92 %). Essa figura taém mostra os O O N K ol
resultados para a et do algoritmo T2Calo para um sistema i Sa— | — :
usando: discriminador de Fisher, &ises de componentes 0 100 200 300 400 500 600

principais [5] e redes neurais [10].
Time (microseconds)

1500

1000

Cumulative Probability (counts)

: : s /Peak Finding
: ‘ ; -=-~ /Ring Building

500

A Figura 5 mostra a performance de tempo para OFIG 5 Distribuicio acumutaliva do tempo de exeBoadas etapas

discriminador baseado em redes neurais que utilizage pr ', > D'SIBUIER0 acumutaiy P xedogd P
. : L do sistema neural baseado né{processamento emé&is.

processamento em @is. Observamos nessa figura urgdes
de distribui@es acumulativas para o tempo de cada uma das
etapas de processamento: géragos aais, normalizago,
discrimina@o neural e o tempo total. Gbdigo em C++ foi R
compilado usando o GCC, comflag de otimizago ligado IV, RELEV ANCIA DOS DADOS

e executado em um processador Pentium-IV com 512 MB
de mendria RAM e clock de 2.4 GHz. Com o tempo de Ao identificar a relefincia dos dados, pode-se compactar

processamento @dio em torno de 4505 conclimos que mais ainda a dimensionalidade dos sinais originais dedadra
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ou, at mesmo, manter a informag redundante, de forma a V. IMPLEMENTAC AO DO ALGORITMO EM DSP
garantir a robustez do discriminador.
Computadores pessoais, apesar da facilidade encontrada
Para identificar a inform&@p relevante, observamos na programa@o e da velocidade de processamentao s
a resposta do classificador neural em termos da sSuaais caros e possuem uma demanda deérmiE muito
sensibilidadea informa@o contida em cada anel. Para tal, elevada. FPGAs (Field Programmable Gate Arrag) s
a componente que representa um dado amseibstitida pela  rapidas e compactas, mas tornam a progrémag a
sua nédia e calculando-se a varéxda sala da rede para esta manutengo de programas complexos bem maisiodlif
substituigo no vetor de entrada em red@ca séda original, Em aplicafes do processamento digital de sinais, existem
de acordo com a seguinte eqaac operafes que do utilizadas com muita frégncia, como
multiplicacgdo, acumulago etc. Para algoritmos que utilizam
essas operées, vem se tornando cada vez mais popular o
uso de DSPs (Digital Signal Processors). Esses dispasitivo
[sdda(X;j) — sdda(Xj|; i:xf,)]z exploram as caractisticas do processamento digital de sinais
o para alcancar elevadas taxas de ex&owgm poucos ciclos.

R =

M=

Zl=

]

c or d lancia d q | calculad O sistema de discrimindg neural baseado nas somas
dom 0 valor de releancia de ca.adane ciac;a O, energticas em aiis foi implementado usando um DSP [11]
podemos otimizar o sistema a partir da supaessios de 32 bits e ponto flutuante. Este DSP possui 100 MHz de

areis menos relevantes. Dessa forma, podemos reduz&rIOCK menbria interna de 4 MB. Para a implemeraiacdo
a d|m<~anao d(?.COI"Ijl:Int'O _de gis tornando a etapa de discriminador neural étron/jato baseado em 100é&s%, o
formagio de agis mais apida. E esperado que a robustez o4 e execiip obtido foi de 492+ 1.108mspor Rol.
do classificador seja suficientemente grande, de forma a
nao diminuir a efigncia do sistema quando se retira A Figura 7 mostra a distribldp acumulativa do tempo
mfor.magé.o irelevante. I_Eventualme_nte, pgdemos amdade execugo das etapas do sistema neural baseado &o pr
eliminar informa@o potencialmente ruidosa (irrelevante) € processamento em @is para a implementig no DSP
com 1Sso, obter um aur‘ner!tO na ém:la Qe_cIaSSIflcap. . Podemos observar que a etapa de folémadps agis sozinha

A Figura 6,ad|C|onaa Figura 4 @_scnmmadores Neurais, renresenta o gasto de tempo de processamento total do
baseados no prprocessamento emés, que foram treinados  gistema, devido a necessidade de etapas condicionais no
a partir da supred® dos aéis menos relevantes. A cadigo. & a etapa de discrimindg, pode aproveitar as
performance de tempo de processamento mostra que, PaZracteisticas do DSP e emédia foi realizada em 1829+
um sistema com 53 afs de entrada, o tempo&uio de 4655 enquanto um processador Pentium-IV de 2.8 GHz
processament@ de cerca de 3Q® e sua efi@ncia de  eyecuta a mesma etapa em, aproximadamentepsl2®
detec@o se mantem, praticamente, inalterada. tempo de execé@p pode ser reduzido ao se trocar o DSP

utilizado por outro com a fré@ncia maior.
R.O.C. for efjet discrimination

Cumulative Timing Distributions, P{time < x)
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. _ B do sistema neural baseado n&4processamento em &ia para a
FIG. 6: Eficéncia com a suprede de akis menos relevantes. implementago no DSP.
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VI. CONCLUSOES

A implementaéo do mesmo algoritmo em um processador

Neste trabalho, apresentamos um sistema de discrifmnagdigital de sinais (DSP) de 100 MHz foi realizada, mostrando-
para o problema de classifiGagektron/jato do segunddvel ~ se como uma alternativa barata e deif manutengo. Foi
de trigger do detector ATLAS, baseado em um mapeamentmostrado que essa implemeréadoi capaz de efetuar muito
topolbgico e redes neurais. Este sistema apresenta unfgem a etapa de hipese do sitema apresentado.
eficiencia de dete@p 8 vezes melhor, ao compararmos
com o algoritmo queé a base de desenvolvimento no
ATLAS, e um tempo de processamento pequeno [(¥50
levando em considerag os requisitos do experimento.
A compactago do vetor de entradas pode ser efetuada
observando-se a relamcia de cada uma das entradas para o Agradecemos ao apoio dado pelo CNPq, FAPERJ (Brasil)
classificador, permitindo o controle da robustez e do tenepo de CERN (Siga) ao projeto. Tan#m agradecemos aos
processamento. A partir da sup@sge metade dos @is, nossos colegas da colabdiacTrigger/DAq por disponibilizar
melhora o tempo de processamento em 35% sem apresentaconjunto de dados e pelas disdies frutferas ao longo do
impacto significativo na efiéncia de classific@p. desenvolvimento deste trabalho.
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