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Discriminação Neural de Eĺetrons no Segundo Ńıvel de Trigger do ATLAS
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This paper presents an electron/jet discriminator system for operating atthe Second Level Trigger of ATLAS.
The system processes calorimetry data and organizes the regions of interest in the calorimeter in the form of
concentric ring sums of energy deposition, so that both signal compaction and high performance can be achieved.
The ring information is fed into a feed forward neural discriminator. Thisimplementation resulted on a 97%
electron detection efficiency for a false alarm of 3%. The full discrimination chain could still be executed in less
than 500µs.

I. INTRODUÇ ÃO

O experimento ATLAS [1], no CERN, irá observar os
produtos das interações pŕoton-pŕoton de alta luminosidade
(1034 cm−2s−1) do colisionador LHC a procura de uma nova
fı́sica de interesse, sendo o bóson de Higgs a principal
busca do experimento. O detector possui um formato
cilı́ndrico eé formado por subdetectores especializados, que
são (da parte mais interna para a mais externa): o detector
interno, que identifica a trajetória das partı́culas carregadas;
os caloŕımetros (eletromagńetico e hadr̂onico), que medem a
energia e a ĉamara de ḿuons, que observa essas partı́culas
que interagem pouco com os subdetectores anteriores. A
partir dessa composição, o ATLAS é capaz de identificar
as principais propriedades dos decaimentos das partı́culas
geradas em cada colisão.

No LHC, pacotes de prótons ir̃ao colidir na freq̈uência
de 40 MHz. Mas, para a luminosidade projetada para
o experimento, serão produzidas cerca de 23 colisões
próton-pŕoton ineĺasticas na mesma freqüência, gerando
uma taxa de aproximadamente 1 GHz. Com o interesse
de reduzir a alta taxa de eventos, foi desenvolvido, para
o experimento ATLAS, um sistema de filtragem (trigger)
online [2] composto por tr̂es ńıveis conectados em cascata,
com complexidade e tempo de processamento crescentes.
O primeiro ńıvel de filtragem (LVL1), usaŕa a informaç̃ao
proveniente dos calorı́metros e da ĉamara de ḿuons para
reduzir a taxa inicial de eventos para não menos que 75 kHz
(esse valor poderá atingir o limite de 100 kHz). Para alcançar
tal objetivo, o LVL1 seŕa implementado emhardware. O
LVL1 também identificaŕa asáreas do detector onde houve
maior deposiç̃ao de energia, chamadas de Regiões de Interesse
(RoIs).

As RoIs definidas pelo LVL1 s̃ao usadas pelo segundo
ńıvel de filtragem (LVL2) [4]. O LVL2 usaŕa toda a fina
granularidade do detector para reduzir a taxa de eventos,
recebida pelo primeiro nı́vel, para 1 kHz. Para efetuar essa
tarefa, contaŕa com uma rede de capacidade equivalente a
1000 CPUs de 4 GHz, que irão processar algoritmos de
busca especializados com intuito de encontrar elementos que
representem um fı́sica de interesse. Finalmente, os eventos
aprovados pelo LVL2 serão apresentados ao terceiro nı́vel,
chamadado de Filtro de Eventos (EF). Este nı́vel de filtragem
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FIG. 1: Sistema de Filtragem de Eventos do ATLAS (figura retirada
de [3]).

trabalhaŕa no mesmo ambiente do LVL2 e irá refinar ainda
mais a seleç̃ao feita, identificando os 100 eventos (taxa de
100 Hz) que serão gravados em ḿıdia permanente. Para isso,
o EF iŕa reconstruir o evento a partir da informação de todos
os subdetectores. Os nı́veis do sistema de filtragem de eventos
do ATLAS podem ser vistos na Figura 1.

A. A seleç̃ao eĺetron/jato

Quando um evento de um candidato a elétron (com
momento elevado)́e identificado pelo LVL1, o LVL2 usa toda
a granularidade do detector a fim de confirmar se este objeto
é ou ñao um eĺetron. O algoritmo que vem sendo a base de
desenvolvimento do LVL2 para operar sobre a informação dos
caloŕımetros e que tem como objetivo identificar elétronsé
chamado de T2Calo [2]. Esteé responśavel por extrair quatro
quantidades altamente discriminates a partir de uma dada
regĩao de interesse indicada pelo LVL1. Essas quantidades
são ent̃ao entregues̀a um algoritmo de hiṕotese, que realiza
cortes, sendo capaz de distingüir objetos melhor que o LVL1.
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Os eĺetrons de momento elevado representam uma das
principais assinaturas do bóson de Higgs, por isso, são objetos
de extrema importância para o ATLAS. Esses elétrons s̃ao
contaminados por jatos de partı́culas, pois o primeiro ńıvel
não consegue diferenciá-los com a informaç̃ao limitada que
possui. É esperado que para cada 25 mil objetos definidos
como eĺetrons pelo LVL1, somente 1 seja realmente um
elétron.

II. A DETECÇ ÃO EL ÉTRON/JATO NEURAL

Redes neurais [5] v̂em produzindo resultados bem
satisfat́orios em experimentos de fı́sica de altas energias [6, 7].
Esta t́ecnicaé muito robusta, de fácil manutenç̃ao e resulta
numa separação melhor quando a aplicação se d́a em um
espaço de entrada de elevada dimensão (como encontrado na
calorimetria do ATLAS).

Atualmente, os algoritmos de processamento utilizados são
divididos em duas etapas. A primeiraé responśavel pela
extraç̃ao das caracterı́sticas de uma entrada com dimensão
elevada em um conjunto reduzido de variáveis altamente
discriminantes. Aṕos esta primeira etapa, as variáveis que
exprimem as caracterı́sticas da entrada são processadas por
um algoritmo de hiṕotese que iŕa decidir sobre a natureza do
objeto analisado.

O T2Calo é um exemplo de algoritmo de extração de
caracteŕısticas. Redes neurais podem ser implementadas após
esse algoritmo para alcançar uma eficiência de discriminaç̃ao
maior que o conjunto de cortes utilizados atualmente. Outra
abordagem, discutida nesse trabalho,é a substituiç̃ao do
algoritmo de extraç̃ao de caracterı́sticas.

A. Pré-processamento topológico em ańeis

Ao observarmos a forma que objetos interagem com o
caloŕımetro, é posśıvel pensar em um algoritmo que melhor
preserva as caracterı́sticas das regiões de interesse [8]. A
Figura 2 mostra a interação de um eĺetron t́ıpico com as
diversas camadas do calorı́metro. No lado esquerdo da figura,
vemos a deposição no caloŕımetro eletromagńetico e no da
direita observamos as camadas do calorı́metro hadr̂onico. Em
média, cada RoI consiste em um conjunto de 1300 células
espalhadas em diferentes camadas do calorı́metro.

A elevada dimens̃ao do espaço de entrada requer a
utilização de uma compactação eficiente. Neste trabalho,
prop̃oe-se uma compactação em ańeis, que seŕa adaptada
às condiç̃oes de granularidade variante da configuração
dos caloŕımetros do ATLAS e iŕa aproveitar a topologia
da deposiç̃ao enerǵetica dos objetos que interagem com
o caloŕımetro. Os ańeis de cada camada são extráıdos
localizando-se a ćelula de maior deposição de energia na
camada e somando-se o valor das células conĉentricas a este
ponto. A Figura 3 ilustra como extrair os anéis de algumas

FIG. 2: Deposiç̃ao de energia, de um elétron t́ıpico, nos caloŕımetros.

camadas dos calorı́metros do ATLAS. Considerando-se as
células em todas as 7 camadas, teremos um total de 100 anéis
para cada RoI identificada pelo LVL1.

FIG. 3: A extraç̃ao dos ańeis em uma RoI nos calorı́metros do
ATLAS.

As somas enerǵeticas em ańeis s̃ao normalizadas da
seguinte forma: para cada camada, calcula-se a soma da
energia de cada célula e divide-se o valor da energia do
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primeiro anel por esta soma. A energia do segundo anelé
dividida pelo valor da soma menos a energia do primeiro anel.
A energia do terceiro anel, pela soma da energia total menos a
energia do primeiro e segundo anéis, e assim sucessivamente,
at́e que o ńumero de ańeis se esgote.É posśıvel observar
que, os valores energéticos nośultimos ańeis de cada camada,
aqueles que possuem a razão sinal-rúıdo menor, ter̃ao o menor
fator de normalizaç̃ao (a maior amplificaç̃ao). Para que isso
não ocorra, se a energia de um anel estiver abaixo de um dado
limite a normalizaç̃aoé feita por uma constante.

O conjunto de ańeis normalizados são entregues a uma rede
neuralfeedforward(“back-propagation”) com 100 entradas, 5
neur̂onios na camada escondida e umúnico neur̂onio de sáıda.

III. RESULTADOS

Para representar a classe de elétrons, foi utilizado um
conjunto de 22 mil eĺetrons, provenientes de simulações
de eĺetrons simples e de decaimentos deH → ZZ → 4e−

e H → ZZ → 2e− + 2µ. Aproximadamente 7 mil jatos,
gerados a partir de simulações de di-jet, foram usados. Esses
jatos foram previamente aprovados por uma simulação do
LVL1, em sua configuraç̃ao real de operação. Esses dados
foram transformados em anéis e normalizados. Metade do
conjunto de dados foi usado para treinar o sistema baseado
em redes neurais e a outra metade para testar a performance
do discriminador neural.

Com o intuito de comparar a eficiência dos dois ḿetodos de
extraç̃ao de caracterı́sticas (T2Calo e ańeis), os mesmos dados
citados anteriormente foram processados pelo algoritmo
T2Calo. A sáıda do T2Calo foi normalizada, retirando-se a
média e dividindo-se pelo desvio padrão.

A Figura 4 compara os resultados, a partir das curvas
ROC (Receiver Operating Curve) [9], entre v́arias t́ecnicas
de discriminaç̃ao em conjunto com o pré-processamento em
ańeis e com o pŕe-processamento usando as variáveis T2Calo.
Observamos que o sistema que possui a menor compactação
apresenta o melhor resultado, produzindo uma freqüência de
falso-alarme 8 vezes menor que o algoritmo T2Calo (para uma
mesma eficîencia de 92 %). Essa figura também mostra os
resultados para a saı́da do algoritmo T2Calo para um sistema
usando: discriminador de Fisher, análises de componentes
principais [5] e redes neurais [10].

A Figura 5 mostra a performance de tempo para o
discriminador baseado em redes neurais que utiliza o pré-
processamento em anéis. Observamos nessa figura uma série
de distribuiç̃oes acumulativas para o tempo de cada uma das
etapas de processamento: geração dos ańeis, normalizaç̃ao,
discriminaç̃ao neural e o tempo total. O código em C++ foi
compilado usando o GCC, com oflag de otimizaç̃ao ligado
e executado em um processador Pentium-IV com 512 MB
de meḿoria RAM e clock de 2.4 GHz. Com o tempo de
processamento ḿedio em torno de 450µs, conclúımos que

FIG. 4: Curvas ROC para várias t́ecnicas de discriminação usando o
pré-processamento em anéis e as quantidades extraı́das pelo T2Calo.

este sistema se torna adequado para o LVL2, já que o tempo
de processamento disponı́vel para todo o LVL2́e de 10ms.

FIG. 5: Distribuiç̃ao acumutaliva do tempo de execução das etapas
do sistema neural baseado no pré-processamento em anéis.

IV. RELEV ÂNCIA DOS DADOS

Ao identificar a relev̂ancia dos dados, pode-se compactar
mais ainda a dimensionalidade dos sinais originais de entradas
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ou, at́e mesmo, manter a informação redundante, de forma a
garantir a robustez do discriminador.

Para identificar a informação relevante, observamos
a resposta do classificador neural em termos da sua
sensibilidadèa informaç̃ao contida em cada anel. Para tal,
a componente que representa um dado anelé substitúıda pela
sua ḿedia e calculando-se a variação da sáıda da rede para esta
substituiç̃ao no vetor de entrada em relação a sáıda original,
de acordo com a seguinte equação:

Ri =
1
N

N

∑
j=1

[sáıda(~x j)−sáıda(~x j |x j,i=x̄i
)]2

Com o valor de relev̂ancia de cada anel calculado,
podemos otimizar o sistema a partir da supressão dos
ańeis menos relevantes. Dessa forma, podemos reduzir
a dimens̃ao do conjunto de anéis tornando a etapa de
formaç̃ao de ańeis mais ŕapida. É esperado que a robustez
do classificador seja suficientemente grande, de forma a
não diminuir a eficîencia do sistema quando se retira
informaç̃ao irrelevante. Eventualmente, podemos ainda
eliminar informaç̃ao potencialmente ruidosa (irrelevante) e,
com isso, obter um aumento na eficiência de classificação.

A Figura 6 adicionàa Figura 4 discriminadores neurais,
baseados no pré-processamento em anéis, que foram treinados
a partir da supressão dos ańeis menos relevantes. A
performance de tempo de processamento mostra que, para
um sistema com 53 anéis de entrada, o tempo médio de
processamentóe de cerca de 300µs e sua eficîencia de
detecç̃ao se mantem, praticamente, inalterada.

FIG. 6: Eficîencia com a supressão de ańeis menos relevantes.

V. IMPLEMENTAÇ ÃO DO ALGORITMO EM DSP

Computadores pessoais, apesar da facilidade encontrada
na programaç̃ao e da velocidade de processamento, são
mais caros e possuem uma demanda de potência muito
elevada. FPGAs (Field Programmable Gate Array) são
rápidas e compactas, mas tornam a programação e a
manutenç̃ao de programas complexos bem mais difı́cil.
Em aplicaç̃oes do processamento digital de sinais, existem
operaç̃oes que s̃ao utilizadas com muita freqüência, como
multiplicaç̃ao, acumulaç̃ao etc. Para algoritmos que utilizam
essas operações, vem se tornando cada vez mais popular o
uso de DSPs (Digital Signal Processors). Esses dispositivos
exploram as caracterı́sticas do processamento digital de sinais
para alcançar elevadas taxas de execução em poucos ciclos.

O sistema de discriminação neural baseado nas somas
enerǵeticas em ańeis foi implementado usando um DSP [11]
de 32 bits e ponto flutuante. Este DSP possui 100 MHz de
clock, meḿoria interna de 4 MB. Para a implementação do
discriminador neural elétron/jato baseado em 100 anéis, o
tempo de execução obtido foi de 4.692± 1.108mspor RoI.

A Figura 7 mostra a distribuição acumulativa do tempo
de execuç̃ao das etapas do sistema neural baseado no pré-
processamento em anéis para a implementação no DSP.
Podemos observar que a etapa de formação dos ańeis sozinha
representa o gasto de tempo de processamento total do
sistema, devido a necessidade de etapas condicionais no
código. J́a a etapa de discriminação, pode aproveitar as
caracteŕısticas do DSP e em ḿedia foi realizada em 10.429±
0.465µs enquanto um processador Pentium-IV de 2.8 GHz
executa a mesma etapa em, aproximadamente, 125µs. O
tempo de execução pode ser reduzido ao se trocar o DSP
utilizado por outro com a freq̈uência maior.

FIG. 7: Distribuiç̃ao acumutaliva do tempo de execução das etapas
do sistema neural baseado no pré-processamento em anéis para a
implementaç̃ao no DSP.
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VI. CONCLUSÕES

Neste trabalho, apresentamos um sistema de discriminação
para o problema de classificação eĺetron/jato do segundo nı́vel
de trigger do detector ATLAS, baseado em um mapeamento
topológico e redes neurais. Este sistema apresenta uma
eficiência de detecção 8 vezes melhor, ao compararmos
com o algoritmo queé a base de desenvolvimento no
ATLAS, e um tempo de processamento pequeno (450µs),
levando em consideração os requisitos do experimento.
A compactaç̃ao do vetor de entradas pode ser efetuada
observando-se a relevância de cada uma das entradas para o
classificador, permitindo o controle da robustez e do tempo de
processamento. A partir da supressão de metade dos anéis,
melhora o tempo de processamento em 35% sem apresentar
impacto significativo na eficiência de classificação.

A implementaç̃ao do mesmo algoritmo em um processador
digital de sinais (DSP) de 100 MHz foi realizada, mostrando-
se como uma alternativa barata e de fácil manutenç̃ao. Foi
mostrado que essa implementação foi capaz de efetuar muito
bem a etapa de hipótese do sitema apresentado.

Agradecimentos

Agradecemos ao apoio dado pelo CNPq, FAPERJ (Brasil)
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