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ABSTRACT 
Within the task domain of a multi-party, multimodal meeting 
focused on the creation of a whiteboard schedule chart, we have 
designed and implemented a general method of aligning 
handwriting and speech for capturing out-of-vocabulary terms, 
dynamically enrolling them in the system’s recognition modules, 
and then using them to improve subsequent tracking and 
recognition. Our approach involves the use of an ensemble of 
syllable and phoneme recognizers for speech whose output is 
integrated with redundantly delivered handwriting recognition. 
We refer to our conceptual framework as Multimodal Out-Of-
Vocabulary Recognition (MOOVR — pronounced mover). 
Within that framework this paper describes our Speech and 
HAndwriting reCognizER module (SHACER — pronounced 
shaker), which observes human-to-human spoken and handwritten 
interactions, analyzes them off-line and contributes improved 
recognitions to a record of the meeting in the form of a project 
schedule. We examine an example meeting and show how our 
technique corrects four of five label recognition errors including 
implicitly discovering the semantics of a handwritten 
abbreviation. 

Categories and Subject Descriptors 
I.2.6 [Artificial Intelligence]: Learning – language acquisition, 
knowledge acquisition. H.5.2 [Information Interfaces and 
Presentation]: User Interfaces – Interaction styles, Input devices 
and strategies.  

General Terms 
Design, Performance, Experimentation. 

Keywords 
Multimodal interaction, vocabulary learning, mutual 
disambiguation. 

1. INTRODUCTION 
The goal of our MOOVR framework is to automatically recognize 
and enroll new vocabulary in a multimodal interface. 
Dynamically augmenting vocabularies, pronunciation lexicons 
and language models is an active area of research in speech and 

gesture recognition [1-6]. Computer systems that track or assist in 
human-human real-time interactions need to be able to learn from 
observation — of sketch [7, 8], of handwriting [9], of speech [10], 
or of related modes like handwriting and speech as in the work we 
describe here. To accomplish this our technique leverages the 
mutually disambiguating aspects of redundantly delivered 
handwriting and speech (Fig. 1).  

In our earlier work on Multimodal New Vocabulary Recognition 
(MNVR) [11] we showed how combining speech-recognizer-
generated phonetic pronunciations with letter-to-sound generated 
phonetic pronunciations from handwriting recognitions 
significantly improves the quality of enrolled pronunciations for 
OOV terms. For example, when a user creating a schedule chart at 
the whiteboard says, “Call this task-line handoff,” where handoff 
is an out-of-vocabulary (OOV) term, while also writing handoff 
on the whiteboard chart to label a task-line (similar to the labeling 
event depicted in Figure 1), the correct spelling (as the user wrote 
it) is handoff, but the handwriting recognizer reports the spelling 
to be handifi. Using letter-to-sound (LTS) rules on handifi yields 
the pronunciation string, “hh ae n d iy f iy,” which is 
one substitution and one insertion away from the correct 
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Figure 1: SHACER being used in a distributed multiparty 
meeting to recognize out-of-vocabulary terms like the taskline 
label, Fred Green, here being redundantly introduced through 
speech and handwriting. 
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Figure 3: List of handwriting recog-
nitions — spelling, score, letter-to-
sound (LTS) phones — for the 
handwritten phrase, test one, from 
Figure 2. 

pronunciation of, “hh ae n d ao f.” In this case the best 
pronunciation alternative from the speech recognizer is, “hh ae 
n d ao f,” which is the correct pronunciation. So by using the 
phone string generated by the speech recognizer we are able to 
enroll the correct pronunciation despite errors in the handwriting 
recognition, thus demonstrating the effectiveness of using 
multimodal speech and handwriting to achieve a level of 
pronunciation modeling accuracy for new (OOV) words not 
achievable by either mode alone. 
MNVR, however, constrains users to only utter OOV terms in 
certain grammatically specified positions within a larger carrier 
phrase. For instance in the example above the carrier phrase is, 
“Call this task-line <oov_term>”, and the <oov_term> can only 
be recognized in the specified position. The advantage of this 
approach is accuracy and tractability: it is a real-time method, and 
the carrier phrase aids in accurate segmentation of the OOV term 
within the larger utterance. For some applications with fixed 
vocabularies (e.g. certain classes of military applications) this 
may be a viable approach; but, in general requiring the use of 
carrier phrases is too restrictive, and a more general approach is 
called for. 
Our Speech and Handwriting reCognizER (SHACER) is a 
general, unconstrained method for capturing speech via an 
ensemble of syllable/phone recognizers and aligning it with 
handwriting recognition results by means of an articulatory-
feature based metric. Along with the ensemble of syllable/phone 
recognizers we also employ a dedicated Word/Phrase Spotting 
Recognizer (WPSR) into which newly recognized terms are 
enrolled and then made available for subsequent recognition, and 
a large vocabulary continuous speech recognizer, Carnegie 
Mellon Univerisity’s Sphinx 3.5 recognizer implemented as a 
Speechalyzer agent within our systems distributed Open Agent 
Architecutre [12]. 

In the remainder of the paper, we first describe the syllable/phone 
recognition ensemble and articulatory-feature based alignment 
mechanism. Then we discuss related work, and examine in detail 
two example meetings in which our approach yields substantial 
improvements in recognition. Among those improvements we 
describe the system’s ability to accumulate knowledge about 
learned words and learned pronunciation variations both within 
individual meetings and persistently across a series of meetings. 
We end our description of the system by looking at how the 
persistent enrollment of learnt new words allows us to 

dynamically acquire the semantics of handwritten abbreviations. 
Finally we conclude and discuss our future work.  

2. SHACER 
SHACER is a general approach for capturing unconstrained 
speech, which may contain OOV terms, via an ensemble of 
syllable and phoneme recognizers. The ensemble of phone 
sequence representations of the input speech are aligned with an 
articulatory-feature based alignment mechanism. Figure 2 
illustrates some of the various phone sequence recognitions and 
their alignment with respect to each other. 

2.1 Phonetic Interpretation and Alignment 
We employ an ensemble 
approach to phone re-
cognition because phone 
recognizers have high 
error rates and our speech 
recognizer (an augment-
ed version of Carnegie 
Mellon University’s 
Sphinx 2) is not 
optimized for phone 
recognition. Each of our 
grammar-based recog-
nizers [11] is tuned to 
yield somewhat different 
phone sequence inter-
pretations as shown in 

Figure 2. It is possible for a single grammar-based recognizer to 
yield multiple phone-level interpretations from a second pass 
lattice search, but given that we use no stochastic model of 
English phone sequences such a lattice search in our approach is 
intractable. If we use threshold pruning to ensure tractability, 
then variations in resulting interpretations tend to be bunched 
toward the end. Using an ensemble of Viterbi, first-pass 
recognizers allows full variation across each interpretation, rather 
than just at the sequence ends. 

Figure 2: Phone sequence outputs for different ensemble
recognizers: (bottom) unconstrained phone-sequence, (middle)
unconstrained syllable sequence grammar, (top) constrained
syllable sequence grammar. 

Figure 4: Phonetic alignment matrix based on articulatory-feature
distance. (A) LTS phone sequences from HW recognition – note
that the handwriting is recognized as one word, “testone,” thus the
consistently incorrect pronunciation sequence is generated by the
LTS engine. (B) Ensemble speech recognition phone sequence
outputs. (C) HW LTS aligned segment accurately bounded within
the larger utterance – over this segment the dynamic phone
bigram sequence model is built that constrains second pass speech
recognition.
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Although our phone recognition rates are low (less than 70%) we 
do know that each interpretation is of the same utterance. Thus, 
they can be reliably aligned using our phonetic articulatory-
feature-based aligner (not described here). This aligner allows us 
to compare phone hypotheses by feature sets rather then by phone 
name: so instead of assigning the phone match between d and t 
an absolute score of 0 because they are not the same phone we 
can instead assign them a metric that takes into account the fact 
that they are identical in all articulatory features except voicing. 
This results in phone hypotheses matrices against which letter-to-
sound (LTS) interpretations of the handwriting letter-string 
hypotheses (Figure 3) can also be aligned to discover their 
segmental boundaries in the spoken utterance with which they 
redundantly occur (as shown in Figure 3). 

2.2 Meeting Recording and Playback 

The example meetings examined here were recorded at the level 
of speech, ink and 3D gesture. Speech was recorded at 11.025 
KHz with head-worn, close-talking microphones (both wired and 
wireless). Ink was captured on an Interwrite™ interactive 
whiteboard. 3D gesture was captured with vision-based body-

tracking using a whiteboard-mounted stereo camera [13]. The 
whiteboard ink for the example meeting used as a basis for 
discussion below is shown in Figure 5. 
Ink and speech can be played back in appropriate order within our 
MultiPlayer Suite (not described here) for off-line analysis and 
integration. All examples discussed result from this off-line 
playback analysis, which simulates real-time input by playing 
back logged messages from multiple input streams in a time-
synchronous, lock-step mode. The errors that occur in this 
Multiplayer analysis for meeting G2 are depicted in Figure 6.  
Note that stroke skipping visible in the ink shown in Figure 5 
causes incorrect handwriting recognition for three of the 
constituent labels in Figure 6. With no other evidence these mis-
recognition errors are not recoverable. However in these cases the 
label names were spoken redundantly as they were handwritten, 
so both the abbreviation semantics and the three incorrect labels 
(along with their pronunciations and semantics) are recoverable 
using SHACER’s second-pass recognition (as shown in Fig. 7). 

2.3 Caching and Second-Pass Recognition 
All spoken inputs to SHACER are first decomposed into Mel 
Cepstral feature vectors and then cached within the system in a 
sliding window that acts like a short term memory over the most 
recent speech events. Caching the speech as feature vector arrays 
saves space and processing time later when the multimodal 
integration agent – after having received some handwriting 
interpretations – calls for a second pass recognition over the 
integrated speech and handwriting phone sequences. Also saved 
in sliding window caches are both the time-segmented transcripts 
and lattices from the parallel Speechalyzer recognition and the 
time-bounded term sequences from the Word/Phrase-Spotting 
Recognizer (WPSR). 
During the G2 meeting each of the handwriting events is 
accompanied by redundant speech. In the human-computer-
interaction (HCI) literature on bi-modal, speech and pen Wizard-
of-Oz systems for map-based and form-filling tasks speech and 
handwriting have been found to co-occur redundantly in this way 
for less than 1% of all interactions [25,27]. However, in the more 
recent educational-technology literature on human-human, 

Figure 5: The ink for the G2 meeting: second in a series of
meetings referred to as the G meeting series. 

Figure 6: G2 meeting analysis errors when SHACER is not used. 
Top: missing semantics for abbreviation. Middle: three 
misspelled constituent labels due to incorrect handwriting (HW)
recognition. Bottom: unrecognized tick mark and label due to
sketch mis-segmentation. 

Figure 7: G2 meeting analysis corrections when SHACER is
used. Top: abbreviation semantics discovered. Middle: 3
constituent labels dynamically enrolled in WPSR with correct
spelling, semantics and pronunciation tuples. Bottom:
Unrecognized tickmark and label not processed by SHACER at
this time, still incorrect. 
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computer-mediated interactions like the presentation of distance-
learning lectures as much as 15% of all pen interactions were 
found to be handwriting [28], and of such handwriting events a 
follow-on study found that 100% of the randomly sampled 
instances of handwritten text were accompanied by semantically 
redundant speech [26]. The G2 handwriting events for the Fred 
Green, Cindy Black and buy computer taskline labels are shown 
in Figure 8 and Figure 9. By handwriting recognition alone none 
are correct. 

When a speech and handwriting integration is hypothesized, a 
second-pass recognition is requested to evaluate it. Information 
from the following sources is examined to propose an integrated 
hypothesis: 
1. Aligned HandWriting/Speech Matrix (AHWSM, e.g. Fig. 4) 

— exposes HW segment location within accompanying 
speech on the basis of articulatory-feature alignment. 

2. Term recognition in WPSR — a match of WPSR terms to an 
HW hypothesis is strong evidence for fusing  
speech/handwriting segment information; otherwise, the 
WPSR term segment can be used to expose HW 
abbreviations. 

3. Use AHWSM segmentation bounds to extract terms from 
Speechalyzer transcript — if HW match exists this is very 

strong evidence for fusing speech/handwriting segment 
information. 

4. Use AHWSM segmentation bounds to extract terms from 
Speechalyzer lattice — if HW match or near match exists this 
is very strong evidence for fusing speech/handwriting segment 
information. 

2.3.1 Lattice Alignment Fusion: ‘Fred Green’ 
In finding the correct spelling and pronunciation for Fred Green 
(as illustrated in Figure 10), list point 4 is the critical piece of 
information. Although Fred Green does not exist in the HW 
hypothesis list (see Fig. 9), there is nonetheless enough phonetic 
information in the HW hypothesis list to make a correct phonetic 
segmentation (by alignment to the ensemble speech output) and 
thus discover the correct HW segmentation bounds within the 
utterance. Given these bounds, term sequences can be extracted 
from the Speechalyzer lattice (see the middle block of Fig. 10). 
Among the term sequences within those bounds is Fred Green, 
which is discovered to be the closest match to the bounded 
segment from the ensemble speech matrix, and thus provides the 
strongest stochastic bias for the second pass evaluation of the 
cached acoustic feature vectors. The bounded matrix segment of 
speech and handwriting phone sequences is used to dynamically 
build a positional bigram model, which provides the stochastic 
constraint for both the second-pass recognition’s Viterbi search 
and lattice search. The second-pass search yields an alternates list 
of pronunciation interpretations of the handwritten term. In this 
case the output of the second-pass recognition (lower block Fig. 
10), when passed through a sound-to-letter engine, exactly 
confirms the Speechalyzer lattice hypothesis, Fred Green. All 
speech and handwriting combinations are scored by combining 
their speech, handwriting and alignment scores, and an alternates 
list of the top scoring combinations is returned. The label 
semantics (e.g. taskline versus milestone label) are determined by 
the spatial location of ink and the current state of the chart. 

Once a label has been recovered, as for Fred Green above, it is 
enrolled in the Word/Phrase-Spotting Recogizer (WPSR), which 
is optimized for word and phrase-spotting. This grammar is 
capable of recognizing the enrolled words or phrases when they 

Figure 9: Handwriting recognition (HWR) for buy computer, a 
chart taskline label. Due to ink-skipping the correct interpretation 
does not occur in the HWR hypothesis list. 

Figure 8: Handwriting recognition (HWR) for Fred Green and 
Cindy Black, a label-list for a chart taskline. Due to ink-skipping 
Fred Green is not found in its HWR hypothesis list, and Cindy 
Black is not the first hypothesis on its list. 

Figure 10: Discovering the correct spelling, semantics and
pronunciation of Fred Green by aligning and fusing speech and
handwriting information sources. 
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are subsequently spoken, for instance while participants are 
pointing to a diagram element and speaking about it (Fig. 18). 

2.3.2 Speech/Handwriting Fusion: ‘Cindy Black’ 
In finding the correct spelling of Cindy Black (as illustrated in 
Figure 11), list point 1 is of primary importance, because in this 
case the correct term sequence does not occur in either the 
Speechalyzer transcript or lattice. However since Cindy Black 
does occur as the second hypothesis on the HW alternates list, 
and its LTS translation is closest to the phone matrix resulting 
from the second-pass search over the cached speech features there 
is enough evidence to choose it as the best spelling. Although the 
canonical pronunciation is not among the results of either the 
ensemble speech or of the second pass search, the pronunciations 
returned, like that highlighted in Figure 11,  do show intriguing 
evidence of phonetic adaptation (e.g., the common tendency to 
say words like black as two syllables, bah-lack, instead of one), 
which we will examine more closely as part of our future work. 

2.3.3 Speech/Handwriting Fusion: ‘buy computer’ 
In finding the correct spelling of buy computer (as illustrated in 
Figure 12), we are able to leverage the refined phone matrix 
produced by the second-pass recognition over the cached speech 

features as an anchor for comparison. Comparing the term 
sequences extracted from the Speechalyzer lattice to the second-
pass phone matrix yields a closest match for the 13th alternative 
(very low on the alternates list by virtue of its Speechalyzer 
score). This strong comparative match boosts it to have the best 
combined score, and thus allows SHACER to recover the correct 
spelling and pronunciation in this instance. 

2.3.4 Speech/Handwriting Fusion: Summary 
In summary it seems clear that the array of evidence (e.g., 
ensemble speech, handwriting, Speechalyzer transcripts and 
lattices, WPSR recognition) that we have at our disposal is very 
rich, and provides a basis for making many reasonable 
recognition choices in context. We are just beginning to explore 
the types of features available in this space and the ways in which 
we can take advantage of this rich information across redundant 
modal inputs. 

2.3.5 Discovering HW Abbreviation Semantics 
In Figure 6 the handwritten abbreviation, JB, is syntactically 
correct but semantically unbound. The system only knows that the 
symbol JB is a handwritten taskline label (see Fig. 13). 

Without SHACER the system does not know that JB has a 
broader sphere of reference, and indeed shares the same meaning 
as the spoken and handwritten term, Joe Browning. SHACER has 
the capability to make this discovery and to do it dynamically 
based on WPSR enrollments from the previous meeting, G1 (as 
shown in Figure 14). WPSR acts a persistent store of enrolled 
spelling/pronunciation combinations that is cumulative either 
within a single meeting or across a series of meetings, thus 
supporting boot-strapped recognition improvements the more 
often the system is used. 

In meeting G2 as the user wrote JB he also said, “This is our 
timeline for ‘Joe Browning.’” The Speechalyzer recognition for 

Figure 11: Discovering the correct spelling for Cindy Black and 
introducing the possibility of pronunciation adaptation. 

Figure 12: Discovering the correct spelling and pronunciation of
the taskline label, buy computer. 

Figure 13: Unbound semantics of taskline label, JB. 

Figure 14: Word/Phrase-Spotting Recognizer (WPSR) acting as a
persistent store of spelling and pronunciations across a series of
meetings (in this case from meeting G1 to meeting G2). 
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this utterance was, “This is our timeline for job running,” 
because Browning is not in the Speechalyzer dictionary. 
However, since Joe Bronwing was enrolled in the WPSR by 

SHACER during meeting G1, it is recognized by WPSR now in 
meeting G2 for this user utterance, and this recognition provides 
the basis for binding JB to Joe Browning as depicted in Figure 15. 

As mentioned in list item 2 above, term recognition in WPSR is 
first used to match to an HW hypothesis. If the bounds of the HW 
hypothesis are significantly different, then the WPSR term 
segment can be used to expose the existence of a handwritten 
abbreviation. This situation is shown in Figure 16. The HW 
abbreviation phone sequence hypotheses cover a segment across 
the ensemble speech much shorter then the bounds of the WPSR 
term’s end boundary. This significant difference triggers a 
decision to explore this WPSR event as the semantics of an HW 
abbreviation.  
We use two pieces of evidence to make the final decision on 
binding the HW abbreviation. First we measure the distance of 
each HW hypothesis from the WPSR output. Currently we only 
consider the HW hypotheses as first letter abbreviatons (but in the 
future we will be expanding to consider other varieties of 
abbreviation). This measurement gives us the best first letter 
abbreviation interpretation (Figure 17). Second we examine the 
Speechalyzer lattice for term sequences across the boundaries 
found in the WPSR recognition, and compare them. Then after 
these two comparisons, if the first letter abbreviation distance is 
close enough and there is a sufficient match between WPSR 
output and the Speechalyzer lattice we decide to treat the HW as 
an abbreviation and bind its semantics to the proper name 
represented by the spelling associated with the WPSR speech 
recognition. We also use the Speechalyzer lattice terms, WPSR 
output and ensemble speech phone sequences to constrain a 
second-pass recognition on cached speech features. Figure 18 
shows the result of the second-pass recognition, a plausible 
pronunciation adaptation for the term Joe Browning, which in turn 
is added back into the WPSR as another pronunciation alternative. 
In the future we will use such additions to refine the WPSR 
pronunciation alternatives (using clustering and centroid 
pronunciations, along the lines of what Roy and Yu & Ballard 

Figure 15: Word/Phrase-Spotting Recognition of Joe Browning
as the basis of binding the semantics of HW abbreviation JB. 

Figure 16: Phonetic alignment matrix across handwriting
hypotheses (for the abbreviation JB) and the ensemble speech
phone sequences for Joe Browning section of, “This is our
timeline for Joe Browning.”  

 
Figure 17: Spelling and pronunciation of the proper name
semantically attached to the HW abbreviation JB. 

Figure 18: A distributed, multimodal, multiparty meeting during 
which MOOVR/SHACER has dynamically discovered the 
semantics of the abbreviaton, JB. As the seated user points 
toward JB his pointing gesture is distributed via the blue circle 
representing the gestural area of confidence. As he says, “There 
is a problem with his office space,” the remote user also sees a 
hover label below JB which contains the semantics of the 
abbreviation, Joe Browning. 
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have outlined in their works – see Section 3.2), but for now we 
just expand the number of alternative pronunciations. 

2.3.6 Using HW Abbreviation Semantics 
Given MOOVR/SHACER’s ability to dynamically discover the 
semantics of handwritten abbreviations, we have also augmented 
our display system so that in a distributed, multimodal, multiparty 
meeting setting (e.g. Fig. 1 and Fig. 18) a remote user (the Lunch 
Room user shown in Figure 18) can see a hover label floating 
below the abbreviation, JB, as another user (the seated Meeting 
Room user in Fig. 18) is pointing at it and referring to it. In Fig. 
18 the seated user, as he is pointing toward the JB milestone on 
the whiteboard, is actually saying, “There is a problem with his 
office space.” Since he does not refer to Joe Browning by name 
the hover semantics is an important means of contextualization 
for the remote user listening and watching the shared display on 
his tablet PC in the Lunch Room. 

3. RELATED WORK 
Early fusion systems like those that augment speech recognition 
by visually extracted face and lip movement features [14] employ 
an approach that discriminatively combines both input streams in 
a single feature space. Previous work in our group [15, 16] 
employs a late-fusion approach, which instead combines the 
output of separate modes after recognition has occurred. This is 
true as well for both our earlier work with MNVR and this work 
with MOOVR/SHACER for combining speech and handwriting 
outputs. For now early-fusion of speech and handwriting remains 
problematic, because of the temporal distance between 
handwriting and the speech that sometimes can occur. 

3.1 Hybrid Fusion Phone Recognition 
A third possibility, aside from either early or late fusion, is a 
hybrid re-recognition (HRR) approach. A variation of this 
approach has been used by Chung et al [1]  in their speak and 
spell technique that allows new users to enroll their names in a 
spoken dialogue system.  
The sub-word-units used by Chung et al for modeling OOV 
words are those of [17]. These are multi-phone sub-word units 
extracted from a large corpus with clustering techniques based on 
a mutual information (MI) metric. Bazzi [18] shows that using 
such MI generated sub-word-units outperforms a system that uses 
only syllabic sub-word units; however, it is interesting to note that 
64% of his MI sub-word units are still actual syllables. Chung et 
al extend the space of sub-word units by associating sub-word-
unit pronunciations with their accompanying spellings, thereby 
making a finer grained, grapho-phonemic model of the sub-word-
unit space. 
Galescu [19] uses an approach similar to Chung et al’s in that he 
chooses grapheme-to-phoneme correspondences (GPCs) as his 
sub-word-units. He uses an MI mechanism like Bazzi’s to cluster 
multi-GPC units (MGUs). Applying his OOV language model to 
the complete utterances in a 186 instance test sets yielded a false 
alarm rate of under 1%, a relative reduction in overall WER of 
between 0.7% - 1.9%, with an OOV detection rate of between 
15.4% - 16.8%. For a large vocabulary system these are 
encouraging results: there is a reduction in WER, whereas other 
systems report increases in WER. 

In designing our algorithms for OOV recognition and multimodal 
new vocabulary enrollment (MNVR and MOOVR/SHACER) we 
have chosen not to use GPCs because they require a large training 
corpus, whereas our static syllable grammar requires none. Since 
there is evidence that many if not most MI extracted clusters are 
actual syllables (64% in Bazzi’s work), we feel that the loss in 
recognition accuracy may be balanced out by the savings in not 
having to acquire a task-specific corpus. 

3.2 Multimodal Semantic Grounding 
Roy [20] developed robotic and perceptual systems that can 
perceive visual scenes, parse utterances spoken to describe the 
scenes into sequences of phonemes, and then over time and 
repeated exposure to such combinations extract phonetic 
representations of words associated with objects in the scene — 
multimodal semantic grounding. In related work Gorniak et al 
[21] use these techniques to augment a drawing application with 
an adaptive speech interface, which learns to associate segmented 
utterance HMMs with button click commands (rather than 
associating OOV recognitions with handwriting and contextual 
semantics as we do). 
Yu & Ballard [22] have developed an intelligent perceptual 
system that can recognize attentional focus through velocity and 
acceleration-based features extracted from head-direction and 
eye-gaze sensor measurements, together with some knowledge of 
objects in the visual scene — based on head-mounted scene 
cameras. Within that context, measurements of the position and 
orientation of hand movements (tracked by tethered magnetic 
sensor) are used to segment spoken utterances describing the 
actions into phone-sequences associated with the action (e.g. 
stapling papers, folding papers, etc.), and over time and repeated 
associations phonetic representations of words describing both the 
objects and the actions performed on those objects can be 
statistically extracted.  

4. CONCLUSION AND FUTURE WORK 
We have described a system capable of multimodal speech and 
handwriting recognition. MOOVR/SHACER is capable of leaning 
new terms dynamically from single instance observations of 
natural human-human interactions during multiparty meetings. 
 Knowledge of the learnt new terms persists across either a single 
meeting or across a series of related meetings. This capability 
supports both improved recognition of label names attached to 
chart constituents on the schedule chart created in our testbed 
domain of a multiparty, multimodal meeting, and also allows us 
to determine the semantics of a handwritten abbreviation for a 
term introduced in an earlier meeting. We have shown an example 
meeting series in which the use of multimodal integration of 
redundant speech and handwriting corrects three out of four chart 
constituent labeling errors, and persistent information about a 
learnt term from an earlier meeting is used to bind and display the 
semantics of a handwritten abbreviation on the schedule chart. 
In the future we will attempt to move beyond chart constituent 
name enrollment to general grammar induction. In this way we 
believe it may be possible to recover the computational 
advantages demonstrated by our earlier Multimodal New 
Vocabulary Recognizer (MNVR) [11], which contextualized out-
of-vocabulary words in specific grammar defined locations within 
a carrier phrase. In effect, we believe it may be possible to start 
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dynamically learning the phrases that people in conversation 
actually use as carriers for the important content words. 
Much more research needs to be done to understand how and why 
people deliver multimodal input redundantly in some settings. We 
will be studying various corpora to hone our understanding of 
these issues and also to begin forming better heuristic and 
statistical characterizations of the temporal, spatial and referential 
aspects of semantically redundant spoken and handwritten 
expression that can aid in building the next generation of robust 
multimodal recognizers. 
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