
HEAT Documentation
Release 2.0

Nicolae Suditu

September 17, 2012

CONTENTS

1 COPYING 1

2 README 3
2.1 Description . 3
2.2 Documentation . 3
2.3 Reference papers . 3
2.4 Demo web-server . 4
2.5 Contact info . 4

3 REQUIREMENTS 5
3.1 Required packages . 5
3.2 Optional packages . 5

4 INSTALLATION 7
4.1 Set up the Django project . 7
4.2 Set up the MySQL database . 7

5 GETTING STARTED 9
5.1 Run the Django web-server . 9
5.2 Run the automatic application . 9
5.3 Generate the Sphinx documentation . 9
5.4 Access the MySQL database . 10

6 LINUX CONFIGURATION 11
6.1 Set up the Apache server . 11

7 DIRECTORY STRUCTURE 13

8 IMPLEMENTATION 15
8.1 settings . 15
8.2 dbutils . 16
8.3 apps . 17
8.4 autoapp . 20
8.5 libs . 20

Python Module Index 23

i

ii

CHAPTER

ONE

COPYING

HEAT is a content-based image retrieval application.

Copyright (c) 2012 Idiap Research Institute <http://www.idiap.ch/>
Written by Nicolae Suditu (Nicolae.Suditu@idiap.ch)

HEAT is free software: you can redistribute it and/or modify it under the terms of the GNU Affero General Public
License version 3 (AGPLv3) as published by the Free Software Foundation.

HEAT is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied
warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Affero General
Public License for more details.

You should have received a copy of the GNU Affero General Public License version 3 (AGPLv3) along with
HEAT. If not, see <http://www.gnu.org/licenses/>.

1

http://www.idiap.ch/
mailto:Nicolae.Suditu@idiap.ch
http://www.gnu.org/licenses/

HEAT Documentation, Release 2.0

2 Chapter 1. COPYING

CHAPTER

TWO

README

HEAT is a content-based image retrieval web-application.

2.1 Description

HEAT is an image retrieval web-application that is intended for large unstructured collections of images without
semantic annotations. The system implements a novel searching paradigm that does not require any explicit query,
and it relies solely on an iterative relevance feedback mechanism. At each iteration, the system displays a small
set of images and the user chooses the image that best matches what she is looking for. The system updates an
internal state and displays a new set of images accordingly. After a few iterations, the sets of displayed images
are gradually concentrated on images that satisfy the user. In principle, the system works on any multimedia
collection for which one can provide vector-like indexing features, as for example bags-of-words based on the
Scale Invariant Feature Transform (SIFT).

The web-application has an infrastructure for conducting user-based evaluations, which was actually used by the
experiments published in the conference papers mentioned below. There is support for inter-changing image col-
lections and different versions of the iterative relevance feedback mechanism. Moreover, there is infrastructure for
handeling user acconts, managing test configurations, recording searching sessions and plotting various statistics.

Besides the web-application, there is a test-platform for running searching sessions automatically. This test-
platform implements a virtual user that interacts with the web-application in exactly the same way a human user
does. In essence, the test-platform is a bridge between the web-application and the virtual user that knows to look
at the currently displayed images and to simulate the relevance feedback events that are normally given by human
users. This platform is very useful for abstract analyzes and code verification.

2.2 Documentation

The project documentation in PDF format is provided along with the archive:

./docs/heat.pdf

2.3 Reference papers

[1] N. Suditu and F. Fleuret, “HEAT: Iterative Relevance Feedback with One Million Images”, in Proceedings of
the IEEE International Conference on Computer Vision (ICCV), November 2011.

[2] N. Suditu and F. Fleuret, “Iterative Relevance Feedback with Adaptive Exploration/Exploitation Trade-off”, in
Proceedings of the ACM International Conference on Information and Knowledge Management (CIKM), October
2012.

3

HEAT Documentation, Release 2.0

2.4 Demo web-server

A demo web-server is available on-line at <http://imr.idiap.ch/>.

2.5 Contact info

Nicolae Suditu (Nicolae.Suditu@idiap.ch)
François Fleuret (Francois.Fleuret@idiap.ch)
Idiap Reseach Institute <http://www.idiap.ch/>

4 Chapter 2. README

http://imr.idiap.ch/
mailto:Nicolae.Suditu@idiap.ch
mailto:Francois.Fleuret@idiap.ch
http://www.idiap.ch/

CHAPTER

THREE

REQUIREMENTS

3.1 Required packages

• MySQL 1.5

• Python 2.6 and the following packages

– matplotlib

– numpy

– scipy

• Django 1.2

• Cython 0.14

3.2 Optional packages

• Sphinx documentation generator

• Packages for debugging

– Django-logging

– Django-extensions

– Pyximport

– Pygments

– Werkzeug

– pep8

– pylint

• Add-ons for Mozilla Firefox

– Firebug

– Dust-Me Selectors

– CSS Refresh

– Selenium

5

HEAT Documentation, Release 2.0

6 Chapter 3. REQUIREMENTS

CHAPTER

FOUR

INSTALLATION

HEAT is a Django-based project, but basically it does not use much of the Django platform besides the
view/template infrastructure. The project does not need a syncdb operation for creating the application model
tables in MySQL, but only for creating the Django-related tables.

The project is self-contained and it is meant to be installed in its own directory, and it is not deployed as an egg or
plug-in application. This is mainly because it needs quite some manual set up and configuration.

4.1 Set up the Django project

1. Make sure the packages mentioned in the REQUIREMENTS are installed.

2. Configure the settings files. Set up the MySQL database access information and all the directories needed
by the application. There is detailed info in the files themselves:

./heat/settings/common.py

./heat/settings/debug.py

./heat/settings/development.py

./heat/settings/production.py

./heat/settings/staging.py

./heat/settings/maintenance.py

3. Open a terminal and go to the project root directory:

cd project_root (the directory of this file)

4. Compile the Cython optimized code:

python setup.py build_ext --inplace

5. Initialize the MySQL tables needed by the Django project. There is detailed info at the Django’s website
<https://www.djangoproject.com/>:

python manage.py syncdb

4.2 Set up the MySQL database

There are provided scripts to set up the system for a synthetic image collection that is useful for illustrating the
system behavior. There is detailed info in the file itself:

./heat/dbutils/imagesynthetic.py

There are provided scripts to set up the system for the ImageNet collection that is freely available at
<http://www.image-net.org/>. The scripts get as input the files provided by ImageNet. There is detailed info
in the files themselves:

7

https://www.djangoproject.com/
http://www.image-net.org/

HEAT Documentation, Release 2.0

./heat/dbutils/imagenet_1M.py

./heat/dbutils/imagenet_33K.py

./heat/dbutils/imagenet_60K.py

The settings file used by these scripts is:

./heat/settings/maintenance.py

Following these examples, one can set up the system for its own image collections. The settings files should be
updated accordingly.

8 Chapter 4. INSTALLATION

CHAPTER

FIVE

GETTING STARTED

5.1 Run the Django web-server

The Django command to start the lightweight development Web server on the local machine is:

./heat/manage.py runserver 8000 --settings=heat.settings.production

For developers, it is useful to install the optional package Django-extensions, and to start the Django Web server
in the debug mode:

./heat/manage.py runserver_plus 8000 --settings=heat.settings.development

Then, the Django Web server can be accessed in one’s preferred browser at the address:

http://127.0.0.1:8000/

5.2 Run the automatic application

There is provided a script to run the system programatically, in which the search sessions are driven by an auto-
matic user:

./heat/autoapp/workflow.py

The settings file used by the automatic application is:

./heat/settings/staging.py

This file should be updated according to the test purpose. As a main setting, there are the collections to be tested
together with the tasks and the configurations to be shuffled in the test. There is detailed info in the file itself.

5.3 Generate the Sphinx documentation

The project documentation in PDF format is provided along with the archive:

./docs/heat.pdf

The Sphinx documentation source files are provided as well:

./extra/sphinx

The project documentation in HTML format can be created by the following command:

sphinx-build -E -b dirhtml ./extra/sphinx ./docs/html

The project documentation in LATEX format can be created by the following command:

9

HEAT Documentation, Release 2.0

sphinx-build -E -b latex ./extra/sphinx ./docs/latex

5.4 Access the MySQL database

Usual commands in the terminal:

mysql --user=user --password=password database

SHOW TABLES;
DESCRIBE table;
SHOW INDEX FROM table;

SELECT * FROM table WHERE id=1;
SELECT COUNT(*) FROM table WHERE column LIKE ’xxx/%’;

CREATE TABLE table2 LIKE table;
INSERT INTO table2 SELECT * FROM table WHERE id=1;

TRUNCATE TABLE table;
DROP TABLE table;
ALTER TABLE table RENAME TO table2;
DELETE FROM table WHERE id > 100;

Backup all the tables that have their names starting with “ImageNet_1M”:

mysqldump --user=user --password=password --host=mysqlserver database
$(mysql --user=user --password=password --host=mysqlserver database
-Bse "show tables like ’ImageNet_1M%’") > ./ImageNet_1M_bkp.sql

Upload the backup data into the database:
WARNING: It overwrites the existing tables with the same names.

mysql --user=user --password=password --host=mysqlserver database < ./ImageNet_1M_bkp.sql

10 Chapter 5. GETTING STARTED

CHAPTER

SIX

LINUX CONFIGURATION

6.1 Set up the Apache server

Edit the configuration file “/etc/apache2/sites-available/default”:

<VirtualHost *:80>

ServerAdmin EMAIL_ADDRESS

ServerRoot PROJECT_ROOT
DocumentRoot PROJECT_ROOT

<Directory PROJECT_ROOT/heat/>
Options FollowSymLinks MultiViews
AllowOverride None
Order deny,allow
Deny from all
Allow from all

AuthName "Protected Area"
AuthType Basic

AuthGroupFile /dev/null
AuthUserFile PROJECT_ROOT/extra/config-apache/htpasswd
Require user LIST_OF_USERS
Satisfy any

</Directory>

Alias /files/ PROJECT_ROOT/media/

<Directory PROJECT_ROOT/media/>
Options FollowSymLinks MultiViews
AllowOverride None
Order deny,allow
Deny from all
Allow from all

</Directory>

Alias /docs/ PROJECT_ROOT/docs/html/

<Directory PROJECT_ROOT/docs/html/>
Options FollowSymLinks MultiViews
AllowOverride None
Options None

11

HEAT Documentation, Release 2.0

Order allow,deny
Allow from all

</Directory>

ErrorLog /var/log/apache2/error.log

Possible values include: debug, info, notice, warn, error, crit, alert, emerg.
LogLevel warn

CustomLog /var/log/apache2/access.log combined

<Location />
Settings for Django
SetHandler python-program
PythonHandler django.core.handlers.modpython
SetEnv DJANGO_SETTINGS_MODULE heat.settings.production

#PythonOption django.root /
PythonPath "[’PATH_TO_YOUR_OWN_PYTHON_PACKAGES’,’PROJECT_ROOT’,] + sys.path"
PythonDebug On
enable expirations
#<IfModule mod_expires.c>
ExpiresActive On
ExpiresDefault A1
#</IfModule>

</Location>

<Location /files>
SetHandler None

</Location>

<Location /docs>
SetHandler None

</Location>

</VirtualHost>

12 Chapter 6. LINUX CONFIGURATION

CHAPTER

SEVEN

DIRECTORY STRUCTURE

The project directory structure is as follows:

|project_root/
| |-- COPYING
| |-- README
| |-- INSTALL
| |-- REQUIREMENTS
| |-- setup.py
| |-- docs/
| | |-- heat.pdf
| |-- extra/
| | |-- selenium/
| | |-- sphinx/
| |-- media/
| | |-- css/
| | |-- js/
| | |-- ImageNet/
| | |-- ImageSynthetic/
| | |-- figures/
| |-- tmp/
| | |-- django-cache/
| |-- heat/
| | |-- manage.py
| | |-- settings/
| | | |-- common.py
| | | |-- debug.py
| | | |-- production.py
| | | |-- development.py
| | | |-- staging.py
| | | |-- maintenance.py
| | |-- dbutils/
| | | |-- imagesynthetic.py
| | | |-- imagenet_1M.py
| | | |-- imagenet_33K.py
| | | |-- imagenet_60K.py
| | |-- apps/
| | | |-- registration/
| | | |-- retrieval/
| | |-- autoapp\
| | | |-- workflow.py
| | |-- templates/
| | | |-- registration/
| | | |-- retrieval/
| | |-- libs/
| | | |-- retrieval_libs/

13

HEAT Documentation, Release 2.0

14 Chapter 7. DIRECTORY STRUCTURE

CHAPTER

EIGHT

IMPLEMENTATION

8.1 settings

Provides the settings for running the Django application.

8.1.1 settings.common

Common settings.

• It configures the Django project and its applications

• It configures the loggers and sets them at the INFO level

settings.common.DATABASES
connection settings for the MySQL database

settings.common.ALL_DB
list of system setups containing the specific settings for each image collection

settings.common.DEFAULT_DB
the default system setup

settings.common.FLAG_TRACEGFX = {‘TRIX_2D’: True, ‘PROB_2D’: False}
enable/disable the trace representations for display

settings.common.ITER_MAX = 20
the maximum number of iterations for the sessions during testing

8.1.2 settings.debug

Debug settings.

• It sets the loggers at the DEBUG level

• It activates the django-logging middleware

8.1.3 settings.production

Settings for running the application in production mode.

8.1.4 settings.development

Settings for running the application in development mode.

15

HEAT Documentation, Release 2.0

8.1.5 settings.staging

Settings for running the application programatically/automatically.

settings.staging.FLAG_TRACEGFX = False
enable/disable the trace representation for display

settings.staging.PROFILE = False
for profiling/timing the program execution

settings.staging.REINIT_LOOP = 1
the period of the re-initialization of the automatic tasks

If it is set to TESTS_MAX, the tasks will be fixed once for all
the tests. This is useful for getting the statistical performance
of the automatic user for one specific task.

If it is set to 1, the tasks will be randomized after each test, so
after each complete set of sessions. This is useful for getting the
statistical performance of the automatic user for a class of tasks.

settings.staging.TESTS_MAX = 1000
the number of tests to be performed by the automatic users

A **test** is a set of sessions. A **session** refers to one
search/retrieval process. Each session is performed on one
image database and it is configured with one task-config peer.

The number of sessions in one *test* is equal to the sum of
all possible task-config peers for all image databases.

8.1.6 settings.maintenance

Settings for uploading the image collections in the database.

8.2 dbutils

Provides functionality for uploading the image collections in the database.

8.2.1 dbutils.imagesynthetic

Uploads the ImageSynthetic collection, where each image contains a 2D point and the image features
are the 2D coordinates of that point.

The hierarchical organization of the collection is as follows. All the points are within the square (0.0,
0.0, 1.0, 1.0), and this is the root square. For any node, its children are obtained by dividing its square
into 4 squares, and its representative image is the center of its square.

For example, the root node represents the full square (0.0, 0.0, 1.0, 1.0), and its representative image
is the central point (0.5, 0.5). Then, its 4 children nodes would represent the squares:

• (0.0, 0.0, 0.5, 0.5) - lower left

• (0.0, 0.5, 0.5, 1.0) - upper left

• (0.5, 0.5, 1.0, 1.0) - upper right

• (0.5, 0.0, 1.0, 0.5) - lower right

16 Chapter 8. IMPLEMENTATION

HEAT Documentation, Release 2.0

8.2.2 dbutils.imagenet_1M

Uploads the ImageNet_1M collection.

• ImageNet collection is provided freely at <http://www.image-net.org/>

• It is assumed that the ImageNet files have beed downloaded

8.2.3 dbutils.imagenet_33K

Uploads the ImageNet_33K collection.

• ImageNet_33K is generated by sub-sampling ImageNet_1M

• It is assumed that ImageNet_1M was already set up

8.2.4 dbutils.imagenet_60K

Uploads the ImageNet_60K collection.

• ImageNet_60K is generated by sub-sampling ImageNet_1M

• It is assumed that ImageNet_1M was already set up

8.3 apps

Repository for the Django applications in the project.

8.3.1 registration

The registration application provides functionality to differenciate between anonymous, regular and staff users.

Anonymous users can access only minimal functionality:

• perform search sessions

Regular users can access additional functionality:

• see the training examples

• perform evaluation tests

Staff users can access additional functionality:

• manage (create/delete/modify) the User, Task, Config models

• view the statistics of the system performance

• watch the test search sessions saved in the database

There is some functionality for managing user groups, e.g. expert users, but there is not much use of it for now.

registration.models.User

class registration.models.User(*args, **kwargs)
User model is a sub-class of the DjangoUser model.

8.3. apps 17

http://www.image-net.org/

HEAT Documentation, Release 2.0

registration.models.Group

class registration.models.Group(*args, **kwargs)
Group model is a sub-class of the DjangoGroup model.

8.3.2 retrieval

The content-based image retrieval application.

retrieval.middleware.DbSetup

class retrieval.middleware.DbSetup
Set up the system for the current database.

retrieval.models.Config

Provides the system configuration.

retrieval.models.Config.get_config_model(active_db)
Creates the corresponding Config model.

class retrieval.models.Config._Config(*args, **kwargs)
Abstract base-class for the Config models.

Variables

• name – the label and the display properties

• TRACE – the trace size

• SYS_THARGS – the image similarity thresholds

• SYS_WEIGHTS – the image feature’s weights

• SYS_CONSISTENCY – the consistency type

• SYS_VERSION – the algorithm version

• datetime (http://docs.python.org/library/datetime.html#datetime) – the time of
the last saving in the database

retrieval.models.Task

Provides the target that is given as reference to the users during the testing and training.

retrieval.models.Task.get_task_model(active_db)
Provides access to the corresponding Task model.

class retrieval.models.Task._Task(*args, **kwargs)
Abstract base-class for the Task models.

Variables

• query – the text query

• target – the target image set

• USR_THARGS – the image similarity thresholds

• USR_WEIGHTS – the image feature’s weights

• USR_VERSION – the algorithm version

• datetime (http://docs.python.org/library/datetime.html#datetime) – the time of
the last saving in the database

18 Chapter 8. IMPLEMENTATION

http://docs.python.org/library/datetime.html#datetime
http://docs.python.org/library/datetime.html#datetime

HEAT Documentation, Release 2.0

retrieval.models.Session

Manages the searching session data.

The session data is accumulated iteration by iteration. In between the
iterations, the session data is stored in the Django-cache-per-user.
At the end of the searching session, the session data is usually deleted,
but in case of testing it stored in the database.

retrieval.models.Session.get_session_model(active_db)
Provides access to the corresponding Session model.

class retrieval.models.Session._Session(*args, **kwargs)
Abstract base-class for the Session models.

Variables

• user (http://docs.python.org/library/user.html#user) – the user that performed
the session

• task – the task given to the user

• config – the system configuration

• iterations – the number of iterations (redundant)

• evaluation – the evaluation given by the user

• actionH – the actions performed on the input data

• thargsH – the history of the image similarity thresholds

• weightsH – the history of the image feature’s weights

• consistencyH – the history of the consistency scores

• dispfdbkH – the displayed image sets and the corresponding relevance feed-
back that was given

• traceH – the evolution of the size of the trace

• timingH – the timing of system response and user feedback

• datetime (http://docs.python.org/library/datetime.html#datetime) – the time of
the saving in the database

retrieval.models.Statistics

Provides the statistics of the system performance.

The model retrieves the session data from the database and generates various plots.
There is user interface to filter the data and to select the statistics of interest.

retrieval.models.Statistics.get_statistics_model(active_db)
Provides access to the corresponding Statistics model.

class retrieval.models.Statistics._Statistics(*args, **kwargs)
Abstract base-class for the Statistics models.

Variables

• users – the list of users

• tasks – the list of tasks

• configs – the list of system configurations

8.3. apps 19

http://docs.python.org/library/user.html#user
http://docs.python.org/library/datetime.html#datetime

HEAT Documentation, Release 2.0

8.4 autoapp

Performs automatic evaluation tests.

8.4.1 autoapp.workflow

Manages the workflow of the automatic user actions and the system responses during the automatic
evaluation tests. The main user actions that are involved are:

• start a new searching session

• provide the relevance feedback

8.4.2 autoapp.browser

Encapsulates the functionality for the Django-view and the Html-page that corresponds to the user
intelligence on how to use the application:

• what are the actions required in a certain state

• what are the buttons that trigger the actions

8.5 libs

Repository for the Django application libraries.

8.5.1 dblayer

Provides functionality for interacting with the database.

This functionality is somehow similar with the Django models, but it is handy for the MySQL tables that need
only low level access.

retrieval_libs.dblayer.DbAccess

Provides the DbTable instances.

class retrieval_libs.dblayer.DbAccess.DbAccess
Provides the DbTable instances.

Note: Implemented as a very simple singleton.

retrieval_libs.dblayer.DbCnx

Manages the database connection and interaction.

retrieval_libs.dblayer.DbTable

Manages the generic interaction with the tables.

20 Chapter 8. IMPLEMENTATION

HEAT Documentation, Release 2.0

retrieval_libs.dblayer.DbTableImg

Manages the table of the image data, e.g. filenames, features and distances.

Among other stuff, it encapsulates the functionality for providing the image similarity distances.
It knows to choose between computing the distances on-the-fly or reading the files with the pre-
computed distances.

class retrieval_libs.dblayer.DbTableImg.DbTableImgSynthetic
DbTableImgSynthetic is a sub-class of DbTableImg.

Note: It generates the synthetic images on-the-fly.

retrieval_libs.dblayer.DbTableTree

Manages the table of the hierarchical tree-like organization of the images.

retrieval_libs.dblayer.FileAccess

Provides methods to access the data files for R/W/A operations.

retrieval_libs.dblayer.FileManager

Generates unique file names.

8.5.2 search

retrieval_libs.search.SearchMain

Manages the workflow within one iteration of the retrieval process.

Based on the system configuration (see retrieval.models.Config (page 18)) that is currently active, the retrieval
iteration employs one of the following algorithms:

retrieval_libs.search.im_orig

Performs the original retrieval algorithm.

class retrieval_libs.search.im_orig.QueryImg.QueryImg
Manages the original retrieval algorithm.

class retrieval_libs.search.im_orig.ProbabilityUpdater.ProbabilityUpdater
Updates the probabilities of image relevance.

class retrieval_libs.search.im_orig.DisplaySetSelector.DisplaySetSelector
Selects the image set for display.

Note: The images are chosen by performing an heuristic algorithm.

class retrieval_libs.search.im_orig.TraceUpdater.TraceUpdater
Manages the rankdata.

Note: Rankdata has the size of the collection at hand.

8.5. libs 21

HEAT Documentation, Release 2.0

class retrieval_libs.search.im_orig.ConsistencyUpdater.ConsistencyUpdater
Estimates the consistency based on the relevance feedback history.

Note: The consistency scores are used to compute the zoom-in factor.

retrieval_libs.search.im_heat

Performs the HEAT retrieval algorithm.

class retrieval_libs.search.im_heat.QueryImg.QueryImg
Manages the HEAT retrieval algorithm.

class retrieval_libs.search.im_heat.DisplaySetSelector.DisplaySetSelector
Selects the image set for display.

Note: The images are chosen by performing an heuristic algorithm.

class retrieval_libs.search.im_heat.TraceUpdater.TraceUpdater
Manages the rankdata.

Note: Rankdata has the size of the trace within the hierarchical tree, and it is dynamically
updated by collapse/expand operations.

retrieval_libs.search.im_rnd

Performs the random retrieval algorithm.

class retrieval_libs.search.im_rnd.QueryImg.QueryImg
Manages the random retrieval algorithm.

class retrieval_libs.search.im_rnd.DisplaySetSelector.DisplaySetSelector
Selects the image set for display.

Note: The images are chosen randomly.

class retrieval_libs.search.im_rnd.TraceUpdater.TraceUpdater
Manages the rankdata.

Note: Rankdata has the size of the collection at hand.

22 Chapter 8. IMPLEMENTATION

PYTHON MODULE INDEX

a
autoapp, 20
autoapp.browser, 20
autoapp.workflow, 20

d
dbutils, 16
dbutils.imagenet_1M, 17
dbutils.imagenet_33K, 17
dbutils.imagenet_60K, 17
dbutils.imagesynthetic, 16

r
registration.models, 17
retrieval.models, 18
retrieval.models.Config, 18
retrieval.models.Session, 19
retrieval.models.Statistics, 19
retrieval.models.Task, 18
retrieval_libs.dblayer, 20
retrieval_libs.dblayer.DbAccess, 20
retrieval_libs.dblayer.DbCnx, 20
retrieval_libs.dblayer.DbTable, 20
retrieval_libs.dblayer.DbTableImg, 21
retrieval_libs.dblayer.DbTableTree, 21
retrieval_libs.dblayer.FileAccess, 21
retrieval_libs.dblayer.FileManager, 21
retrieval_libs.search.im_heat, 22
retrieval_libs.search.im_orig, 21
retrieval_libs.search.im_rnd, 22
retrieval_libs.search.SearchMain, 21

s
settings, 15
settings.common, 15
settings.debug, 15
settings.development, 15
settings.maintenance, 16
settings.production, 15
settings.staging, 16

23

	COPYING
	README
	Description
	Documentation
	Reference papers
	Demo web-server
	Contact info

	REQUIREMENTS
	Required packages
	Optional packages

	INSTALLATION
	Set up the Django project
	Set up the MySQL database

	GETTING STARTED
	Run the Django web-server
	Run the automatic application
	Generate the Sphinx documentation
	Access the MySQL database

	LINUX CONFIGURATION
	Set up the Apache server

	DIRECTORY STRUCTURE
	IMPLEMENTATION
	settings
	dbutils
	apps
	autoapp
	libs

	Python Module Index

