Basic bar plotter for simple histograms
Parameters allow users to change the configuration of an plotter when scheduling an experiment
Name | Description | Type | Default |
---|---|---|---|
xlabel | The label of the X-axis (horizontal) | string | |
ylabel | The label of the Y-axis (vertical) | string | |
title | The title for this plot | string | Bar plot |
title-fontsize | Controls the title font size | uint16 | 10 |
xaxis_multiplier | The multiplication factor for the X-axis (horizontal) | float64 | 1.0 |
yaxis_multiplier | The multiplication factor for the Y-axis (vertical) | float64 | 1.0 |
legend | Short description of the data, to be added to the plot | string | |
legend-fontsize | Controls the font size of the legend | uint16 | 12 |
legend-loc | The location of the legend | string | best |
legend-bbox-to-anchor | Specify any arbitrary location for the legend | string | 1.0&1.0 |
grid | If we should draw grid lines or not for the plot | bool | False |
yaxis_log | If Y-axis (vertical) should be in log-scale | bool | False |
dpi | Dots-per-inch in raster image formats | uint16 | 60 |
bar-alpha | Value for the alpha effect in the bar plot | float64 | 0.75 |
bar-norm | If set to true will normalize the distribution between 0-1 | bool | True |
width | Width of the resulting image in pixels | uint16 | 400 |
height | Height of the resulting image in pixels | uint16 | 300 |
axis-fontsize | Controls the axis font size (labels and values) | uint16 | 10 |
content_type | The type of image returned | string | image/png |
bar_attributes | Bar attributes passed directly to Matplotlib | string |
xxxxxxxxxx
# Makes sure we won't require an X11 connection
import matplotlib
matplotlib.use('Agg')
import numpy
import itertools
class Plotter(baselib.Plotter):
def setup(self, parameters):
super(Plotter, self).setup(parameters)
self.loc = parameters.get('legend-loc', '')
self.legend_bbox_to_anchor = parameters.get('legend-bbox-to-anchor', '').split('&')
self.legend_bbox_to_anchor = [float(self.legend_bbox_to_anchor[k]) for k in range(2) ] #Taking only the two first arguments and cast to float64
self.bar_attributes = parameters.get('bar_attributes', '').split('&')
self.bar_attributes = [k for k in self.bar_attributes if k]
self.bar_default_ratio_width = 1
self.bar_alpha = parameters.get('bar-alpha', '')
self.axis_fontsize = parameters.get('axis-fontsize', '')
self.bar_norm = parameters.get('bar-norm', '')
self.title_fontsize = parameters.get('title-fontsize', '')
self.legend_fontsize = parameters.get('legend-fontsize', '')
# These are the "Tableau 20" colors as RGB.
self.tableau20 = [(31, 119, 180), (174, 199, 232), (255, 127, 14), (255, 187, 120),
(44, 160, 44), (152, 223, 138), (214, 39, 40), (255, 152, 150),
(148, 103, 189), (197, 176, 213), (140, 86, 75), (196, 156, 148),
(227, 119, 194), (247, 182, 210), (127, 127, 127), (199, 199, 199),
(188, 189, 34), (219, 219, 141), (23, 190, 207), (158, 218, 229)]
# Scale the RGB values to the [0, 1] range, which is the format matplotlib accepts.
for i in range(len(self.tableau20)):
r, g, b = self.tableau20[i]
self.tableau20[i] = (r / 255., g / 255., b / 255.)
return True
def process(self, inputs):
fig, ax = super(Plotter, self).prepare_canvas()
super(Plotter, self).apply_parameters(ax)
ax.set_title(self.title, fontdict={'fontsize':self.title_fontsize})
if(self.bar_norm):
ax.set_ylabel("Normalized frequency", fontdict={'fontsize':self.axis_fontsize})
ax.set_ylim(0,1.1)
else:
ax.set_ylabel("Frequency", fontdict={'fontsize':self.axis_fontsize})
args = []
label = []
single_experiment = len(inputs) == 1
n_plots = 0
bar_lst = []
for xp_label, experiment in inputs:
for cur_bar in experiment.data:
n_plots += 1
# Massages the input data
x = cur_bar.x * self.xaxis_multiplier
y = cur_bar.y * self.yaxis_multiplier
#Normalizing if necessary
if(self.bar_norm):
y = (y - numpy.min(y))/(numpy.max(y) - numpy.min(y))
args = (x,y)
# Additional attributes
if self.bar_attributes: args = args + (self.bar_attributes,)
width = self.bar_default_ratio_width * (x[1] - x[0])
kwargs = {'color': self.tableau20[n_plots % len(self.tableau20)], 'width': width, 'alpha':self.bar_alpha, 'linewidth':0.25}
# Append labels
if self.label: #gets the label from user overwritten input
if single_experiment:
# ignore user label and use only bar labels
label.append(cur_bar.label)
else:
# user-provided labels refer to experiment names
text = [k for k in (self.label[len(label)%len(self.label)], cur_bar.label) if k]
label.append('-'.join(text))
else: #make-up label
if single_experiment:
label.append(cur_bar.label)
else:
text = [k for k in (xp_label, cur_bar.label) if k]
label.append('-'.join(text))
# Plots
bar_lst.append(ax.bar(*args, **kwargs))
if n_plots > 1:
ax.legend(bar_lst, label, loc=self.loc, fontsize=self.legend_fontsize, fancybox=True, framealpha=0.5)
return super(Plotter, self).encode_figure(fig)
This is the default plotter for bar plots. It provides sensible defaults in case the user has not selected any.
Updated | Name | Actions | |
---|---|---|---|
Jan. 5, 2017 | sbhatta/replay_antispoofing (PAD experiments using ReplayAttack database) | ||
July 15, 2016 | pkorshunov/MFCC-GMM-based-PAD-system (Performance of MFCC-GMM-based PAD system on presentation attacks) |