This algorithm is a legacy one. The API has changed since its implementation. New versions and forks will need to be updated.

Algorithms have at least one input and one output. All algorithm endpoints are organized in groups. Groups are used by the platform to indicate which inputs and outputs are synchronized together. The first group is automatically synchronized with the channel defined by the block in which the algorithm is deployed.

Group: main

Endpoint Name Data Format Nature
image system/array_2d_uint8/1 Input
id system/uint64/1 Input
projections system/array_2d_floats/1 Output

Unnamed group

Endpoint Name Data Format Nature
subspace tutorial/linear_machine/1 Input
xxxxxxxxxx
57
 
1
import bob
2
import numpy
3
4
5
6
def linear_machine_from_data(data):
7
    """Unmangles a bob.machine.LinearMachine from a BEAT Data object"""
8
9
    machine = bob.machine.LinearMachine(data.weights)
10
    machine.biases = data.biases
11
    machine.input_subtract = data.input_subtract
12
    machine.input_divide = data.input_divide
13
    return machine
14
15
16
17
class Algorithm:
18
19
    def __init__(self):
20
        self.machine            = None
21
        self.projections        = None
22
        self.current_projection = 0
23
24
25
    def process(self, inputs, outputs):
26
27
        # retrieve the linear machine once
28
        if self.machine is None:
29
            inputs['subspace'].next()
30
            self.machine = linear_machine_from_data(inputs['subspace'].data)
31
32
33
        # collect all the image projections for the current template
34
        image = inputs['image'].data.value.astype('float64').flatten()
35
        projection = self.machine.forward(image)
36
37
        if self.projections is None:
38
            group = inputs.groupOf('id')
39
            nb_images = inputs["id"].data_index_end - inputs["id"].data_index + 1
40
            self.projections = numpy.ndarray((nb_images, projection.shape[0]), dtype='float64')
41
            self.current_projection = 0
42
43
        self.projections[self.current_projection,:] = projection
44
        self.current_projection += 1
45
46
47
        # generate the results (when all the images of the current template have been
48
        # projected)
49
        if inputs["id"].isDataUnitDone():
50
            outputs['projections'].write({
51
                'value': self.projections
52
            })
53
54
            self.projections = None
55
56
        return True
57

The code for this algorithm in Python
The ruler at 80 columns indicate suggested POSIX line breaks (for readability).
The editor will automatically enlarge to accomodate the entirety of your input
Use keyboard shortcuts for search/replace and faster editing. For example, use Ctrl-F (PC) or Cmd-F (Mac) to search through this box

Could not find any documentation for this object.
No experiments are using this algorithm.
Created with Raphaël 2.1.2[compare]tutorial/linear_machine_projection/1tutorial/linear_machine_projection/3Jun29tutorial/linear_machine_projection/42014Nov5anjos/lda_projection/13sbhatta/iqm_project_lda/4Sep17chichan/comp_linear_machine_projection/3718amohammadi/linear_machine_projection/12015Nov252020Jul21

This table shows the number of times this algorithm has been successfully run using the given environment. Note this does not provide sufficient information to evaluate if the algorithm will run when submitted to different conditions.

Terms of Service | Contact Information | BEAT platform version 2.2.1b0 | © Idiap Research Institute - 2013-2025