Computes the score given a GMM and UBM using the Linear Scoring algorithm

This algorithm is a legacy one. The API has changed since its implementation. New versions and forks will need to be updated.
This algorithm is splittable

Algorithms have at least one input and one output. All algorithm endpoints are organized in groups. Groups are used by the platform to indicate which inputs and outputs are synchronized together. The first group is automatically synchronized with the channel defined by the block in which the algorithm is deployed.

Group: probes

Endpoint Name Data Format Nature
comparison_ids system/array_1d_uint64/1 Input
probe_statistics tutorial/gmm_statistics/1 Input
probe_id system/uint64/1 Input
probe_client_id system/uint64/1 Input
scores tutorial/probe_scores/1 Output

Group: templates

Endpoint Name Data Format Nature
template_client_id system/uint64/1 Input
template_id system/uint64/1 Input
template_model tutorial/gmm/1 Input

Unnamed group

Endpoint Name Data Format Nature
ubm tutorial/gmm/1 Input
xxxxxxxxxx
89
 
1
import bob
2
import numpy
3
from bob.machine import GMMMachine
4
from bob.machine import GMMStats
5
6
7
8
def gmm_from_data(data):
9
    """Unmangles a bob.machine.GMMMachine from a BEAT Data object"""
10
11
    dim_c, dim_d = data.means.shape
12
    gmm = GMMMachine(dim_c, dim_d)
13
    gmm.weights = data.weights
14
    gmm.means = data.means
15
    gmm.variances = data.variances
16
    gmm.variance_thresholds = data.variance_thresholds
17
    return gmm
18
19
20
21
def stats_from_data(data):
22
    """Unmangles a bob.machine.GMMStats from a BEAT Data object"""
23
24
    dim_c, dim_d = data.sum_px.shape
25
    stat = GMMStats(dim_c, dim_d)
26
    stat.t = long(data.t)
27
    stat.n = data.n
28
    stat.sum_px = data.sum_px
29
    stat.sum_pxx = data.sum_pxx
30
    return stat
31
32
33
34
class Algorithm:
35
36
    def __init__(self):
37
        self.ubm       = None
38
        self.templates = None
39
40
41
    def process(self, inputs, outputs):
42
43
        # retrieve the UBM once
44
        if self.ubm is None:
45
            inputs['ubm'].next()
46
            self.ubm = gmm_from_data(inputs['ubm'].data)
47
48
49
        # retrieve all the templates once
50
        if self.templates is None:
51
            self.templates = {}
52
            group = inputs.groupOf('template_model')
53
54
            while group.hasMoreData():
55
                group.next()
56
57
                template_id = group['template_id'].data.value
58
59
                self.templates[template_id] = dict(
60
                    client_id = group['template_client_id'].data.value,
61
                    model = gmm_from_data(group['template_model'].data),
62
                )
63
64
65
        # process the probe
66
        comparison_ids = inputs['comparison_ids'].data.value
67
        statistics = stats_from_data(inputs['probe_statistics'].data)
68
69
        scores = []
70
        for comparison_id in comparison_ids:
71
            template_client_identity = self.templates[comparison_id]['client_id']
72
73
            score = bob.machine.linear_scoring([self.templates[comparison_id]['model']],
74
                                               self.ubm, [statistics])[0,0]
75
76
            scores.append({
77
                'template_identity': template_client_identity,
78
                'score': score,
79
            })
80
81
        outputs['scores'].write({
82
                'client_identity': inputs['probe_client_id'].data.value,
83
                'scores': scores
84
            },
85
            end_data_index=inputs['probe_id'].data_index_end
86
        )
87
88
        return True
89

The code for this algorithm in Python
The ruler at 80 columns indicate suggested POSIX line breaks (for readability).
The editor will automatically enlarge to accomodate the entirety of your input
Use keyboard shortcuts for search/replace and faster editing. For example, use Ctrl-F (PC) or Cmd-F (Mac) to search through this box

For a given set of feature vectors, a Gaussian Mixture Model (GMM) of the target client and an UBM-GMM, this algorithm computes the scoring using the linear scoring implemented on the `Bob https://www.idiap.ch/software/bob/docs/releases/last/sphinx/html/machine/generated/bob.machine.linear_scoring.html?highlight=linear%20scoring#bob.machine.linear_scoring`_

This algorithm relies on the Bob library.

The inputs are:

  • probe_statistics: A set of GMM Statistics of a probe.
  • probe_id: A set of probe (class/subject) identifier as an unsigned 64 bits integer.
  • ubm: A GMM corresponding to the Universal Background Model.
  • template_id: Client (class/subject) identifier as an unsigned 64 bits integer.
  • template_model: The GMM of the client

The output are the scores.

Docutils System Messages

System Message: ERROR/3 (<string>, line 1); backlink

Unknown target name: "bob https://www.idiap.ch/software/bob/docs/releases/last/sphinx/html/machine/generated/bob.machine.linear_scoring.html?highlight=linear%20scoring#bob.machine.linear_scoring".

Experiments

Updated Name Databases/Protocols Analyzers
tutorial/tutorial/full_ubmgmm/2/mobioMale_gmm_DCT12x8_100G mobio/1@male tutorial/eerhter_postperf_iso/1
tutorial/tutorial/full_ubmgmm/2/mobioMale_ubmgmm_DCT12x8_100G mobio/1@male tutorial/eerhter_postperf_iso/1
tutorial/tutorial/full_ubmgmm/2/bancaP_gmm_DCT12x8_100G banca/1@P tutorial/eerhter_postperf_iso/1
Created with Raphaël 2.1.2[compare]tutorial/gmm_scoring/1tutorial/gmm_scoring/3Jun27tutorial/gmm_scoring/42014Nov112015Sep3

This table shows the number of times this algorithm has been successfully run using the given environment. Note this does not provide sufficient information to evaluate if the algorithm will run when submitted to different conditions.

Terms of Service | Contact Information | BEAT platform version 2.2.1b0 | © Idiap Research Institute - 2013-2025