LBP Feature extractor
Algorithms have at least one input and one output. All algorithm endpoints are organized in groups. Groups are used by the platform to indicate which inputs and outputs are synchronized together. The first group is automatically synchronized with the channel defined by the block in which the algorithm is deployed.
Endpoint Name | Data Format | Nature |
---|---|---|
image | system/array_3d_uint8/1 | Input |
eye_centers | system/eye_positions/1 | Input |
histogram | system/array_1d_floats/1 | Output |
Parameters allow users to change the configuration of an algorithm when scheduling an experiment
Name | Description | Type | Default | Range/Choices |
---|---|---|---|---|
block_size | int32 | 12 | ||
block_overlap | int32 | 0 | ||
cropped_image_height | uint32 | 80 | ||
cropped_image_width | uint32 | 64 | ||
right_eye_pos_x | uint32 | 16 | ||
right_eye_pos_y | uint32 | 15 | ||
left_eye_pos_x | uint32 | 16 | ||
left_eye_pos_y | uint32 | 48 | ||
lbp_P | int32 | 8 | ||
lbp_R | float64 | 2.0 |
xxxxxxxxxx
import bob
import numpy
"""
Receive an image and computes the LBP histogram
LBP always squared
"""
class Algorithm:
def __init__(self):
self.block_size = 12
self.block_overlap = 0
self.cropped_image_height = 80
self.cropped_image_width = 64
self.right_eye_pos_x = 16
self.right_eye_pos_y = 15
self.left_eye_pos_x = 16
self.left_eye_pos_y = 48
self.lbp_P = 8
self.lbp_R = 1.
def setup(self, parameters):
self.block_size = parameters.get('block_size', self.block_size)
self.block_overlap = parameters.get('block_overlap', self.block_overlap)
self.cropped_image_height = parameters.get('cropped_image_height', self.cropped_image_height)
self.cropped_image_width = parameters.get('cropped_image_width', self.cropped_image_width)
self.right_eye_pos_x = parameters.get('right_eye_pos_x', self.right_eye_pos_x)
self.right_eye_pos_y = parameters.get('right_eye_pos_y', self.right_eye_pos_y)
self.left_eye_pos_x = parameters.get('left_eye_pos_x', self.left_eye_pos_x)
self.left_eye_pos_y = parameters.get('left_eye_pos_y', self.left_eye_pos_y)
self.lbp_P = parameters.get('lbp_P', self.lbp_P)
self.lbp_R = parameters.get('lbp_R', self.lbp_R)
self.face_norm = bob.ip.FaceEyesNorm(
self.cropped_image_height, # cropped image height
self.cropped_image_width, # cropped image width
self.right_eye_pos_y, # Y of first position (usually: right eye)
self.right_eye_pos_x, # X of first position (usually: right eye)
self.left_eye_pos_y, # Y of second position (usually: left eye)
self.left_eye_pos_x # X of second position (usually: left eye)
)
self.lbp = bob.ip.LBPHSFeatures(self.block_size,
self.block_size,
self.block_overlap,
self.block_overlap,
bob.ip.LBP(self.lbp_P, self.lbp_R, uniform = True)
)
return True
def process(self, inputs, outputs):
image = inputs["image"].data.value
image = bob.ip.rgb_to_gray(image)
eye_positions = inputs["eye_centers"].data
annotation_right_eye_y = int(eye_positions.right.y)
annotation_right_eye_x = int(eye_positions.right.x)
annotation_left_eye_y = int(eye_positions.left.y)
annotation_left_eye_x = int(eye_positions.left.x)
normalize_face = self.face_norm(image, annotation_right_eye_y, annotation_right_eye_x, annotation_left_eye_y, annotation_left_eye_x)
histogram = numpy.hstack(self.lbp(normalize_face)).astype(numpy.float64)
#import ipdb; ipdb.set_trace();
outputs["histogram"].write({
'value':histogram
})
return True
The code for this algorithm in Python
The ruler at 80 columns indicate suggested POSIX line breaks (for readability).
The editor will automatically enlarge to accomodate the entirety of your input
Use keyboard shortcuts for search/replace and faster editing. For example, use Ctrl-F (PC) or Cmd-F (Mac) to search through this box
Details about LBP operator can be found in [Ojala02]
The output are the concatenated histograms of each block.
[Ojala02] |
|
This table shows the number of times this algorithm has been successfully run using the given environment. Note this does not provide sufficient information to evaluate if the algorithm will run when submitted to different conditions.