This algorithm is a legacy one. The API has changed since its implementation. New versions and forks will need to be updated.

Algorithms have at least one input and one output. All algorithm endpoints are organized in groups. Groups are used by the platform to indicate which inputs and outputs are synchronized together. The first group is automatically synchronized with the channel defined by the block in which the algorithm is deployed.

Group: probes

Endpoint Name Data Format Nature
probe_isv_offset system/array_1d_floats/1 Input
probe_statistics tutorial/gmm_statistics/1 Input
template_ids system/array_1d_uint64/1 Input
probe_id system/uint64/1 Input
probe_client_id system/uint64/1 Input
scores tutorial/probe_scores/1 Output

Group: templates

Endpoint Name Data Format Nature
template_client_id system/uint64/1 Input
template_id system/uint64/1 Input
template_model tpereira/isvmachine/1 Input

Group: train

Endpoint Name Data Format Nature
ubm tutorial/gmm/1 Input
isvbase tpereira/isvbase/1 Input
xxxxxxxxxx
112
 
1
import bob
2
import numpy
3
4
5
6
def gmm_from_data(data):
7
    """Unmangles a bob.machine.GMMMachine from a BEAT Data object"""
8
9
    dim_c, dim_d = data.means.shape
10
    gmm = bob.machine.GMMMachine(dim_c, dim_d)
11
    gmm.weights = data.weights
12
    gmm.means = data.means
13
    gmm.variances = data.variances
14
    gmm.variance_thresholds = data.variance_thresholds
15
    return gmm
16
17
18
def isvbase_from_data(data, ubm):
19
    """Unmangles a bob.machine.ISVBase from a BEAT Data object"""
20
21
    dim_cd, dim_u = data.subspace_u.shape
22
    isvbase = bob.machine.ISVBase(ubm, dim_u)
23
    isvbase.u = data.subspace_u
24
    isvbase.d = data.subspace_d
25
    return isvbase
26
27
28
def stats_from_data(data):
29
    """Unmangles a bob.machine.GMMStats from a BEAT Data object"""
30
31
    dim_c, dim_d = data.sum_px.shape
32
    stat = bob.machine.GMMStats(dim_c, dim_d)
33
    stat.t = long(data.t)
34
    stat.n = data.n
35
    stat.sum_px = data.sum_px
36
    stat.sum_pxx = data.sum_pxx
37
    return stat
38
39
40
def isvmachine_from_data(data, isvbase):
41
    """Unmangles a bob.machine.ISVBase from a BEAT Data object"""
42
43
    isvmachine = bob.machine.ISVMachine(isvbase)
44
    isvmachine.z = data.latent_z
45
    return isvmachine
46
47
48
49
50
class Algorithm:
51
52
    def __init__(self):
53
        self.ubm       = None
54
        self.isvbase   = None
55
        self.templates = None
56
57
58
    def process(self, inputs, outputs):
59
60
        # retrieve the UBM once
61
        if self.ubm is None:
62
            inputs['ubm'].next()
63
            self.ubm = gmm_from_data(inputs['ubm'].data)
64
65
        # retrieve the ISVBase once
66
        if self.isvbase is None:
67
            inputs['isvbase'].next()
68
            self.isvbase = isvbase_from_data(inputs['isvbase'].data, self.ubm)
69
70
71
        # retrieve all the templates once
72
        if self.templates is None:
73
            self.templates = {}
74
            group = inputs.groupOf('template_model')
75
76
            while group.hasMoreData():
77
                group.next()
78
79
                template_id = group['template_id'].data.value
80
81
                self.templates[template_id] = dict(
82
                    client_id = group['template_client_id'].data.value,
83
                    model = isvmachine_from_data(group['template_model'].data, self.isvbase),
84
                )
85
86
        # process the probe
87
        template_ids = inputs['template_ids'].data.value
88
        statistics = stats_from_data(inputs['probe_statistics'].data)
89
        ux = inputs['probe_isv_offset'].data.value
90
91
        scores = []
92
        for template_id in template_ids:
93
            template_client_identity = self.templates[template_id]['client_id']
94
            model = self.templates[template_id]['model']
95
            
96
            
97
            score = model.forward_ux(statistics, ux)
98
99
            scores.append({
100
                'template_identity': template_client_identity,
101
                'score': score,
102
            })
103
104
        outputs['scores'].write({
105
                'client_identity': inputs['probe_client_id'].data.value,
106
                'scores': scores
107
            },
108
            end_data_index=inputs['probe_id'].data_index_end
109
        )
110
111
        return True
112

The code for this algorithm in Python
The ruler at 80 columns indicate suggested POSIX line breaks (for readability).
The editor will automatically enlarge to accomodate the entirety of your input
Use keyboard shortcuts for search/replace and faster editing. For example, use Ctrl-F (PC) or Cmd-F (Mac) to search through this box

Could not find any documentation for this object.
No experiments are using this algorithm.
Created with Raphaël 2.1.2[compare]tpereira/isv_scoring/1tpereira/isv_scoring/3Aug29tpereira/isv_scoring/42014Nov7pkorshunov/isv_scoring/22015Sep152016Mar18
This algorithm was never executed.
Terms of Service | Contact Information | BEAT platform version 2.2.1b0 | © Idiap Research Institute - 2013-2025