Extracts grid graphs of Gabor jets

This algorithm is a legacy one. The API has changed since its implementation. New versions and forks will need to be updated.
This algorithm is splittable

Algorithms have at least one input and one output. All algorithm endpoints are organized in groups. Groups are used by the platform to indicate which inputs and outputs are synchronized together. The first group is automatically synchronized with the channel defined by the block in which the algorithm is deployed.

Group: main

Endpoint Name Data Format Nature
image system/array_2d_floats/1 Input
graph siebenkopf/graph/1 Output

Parameters allow users to change the configuration of an algorithm when scheduling an experiment

Name Description Type Default Range/Choices
step-y The step size between two nodes in vertical direction uint32 8
step-x The step size between two nodes in horizontal direction uint32 8
first-x The horizontal position of the first node in the grid uint32 4
first-y The vertical position of the first node in the grid uint32 4

The code for this algorithm in Python
The ruler at 80 columns indicate suggested POSIX line breaks (for readability).
The editor will automatically enlarge to accomodate the entirety of your input
Use keyboard shortcuts for search/replace and faster editing. For example, use Ctrl-F (PC) or Cmd-F (Mac) to search through this box

This algorithm extracts Gabor jets in grid graphs from the input images, as given in [Guenther12]. So far, the Gabor wavelet parameters cannot be modified, but in later versions, this might be the case.

[Guenther12]Manuel Günther, Denis Haufe, Rolf P. Würtz. Face recognition with disparity corrected Gabor phase differences. Artificial Neural Networks and Machine Learning, pp. 411-418, 2012.

Experiments

Updated Name Databases/Protocols Analyzers
siebenkopf/siebenkopf/FaceRec-WithOut-Training/2/XM2VTS-PhaseDiff xm2vts/1@darkened-lp1 siebenkopf/ROC/15,siebenkopf/EER_HTER/8
siebenkopf/siebenkopf/FaceRec-WithOut-Training/2/XM2VTS-ScalarProduct xm2vts/1@darkened-lp1 siebenkopf/ROC/15,siebenkopf/EER_HTER/8
siebenkopf/siebenkopf/FaceRec-WithOut-Training/2/XM2VTS-Canberra xm2vts/1@darkened-lp1 siebenkopf/ROC/15,siebenkopf/EER_HTER/8
siebenkopf/siebenkopf/FaceRec-WithOut-Training/2/Banca_P-ScalarProduct banca/1@P siebenkopf/ROC/15,siebenkopf/EER_HTER/8
siebenkopf/siebenkopf/FaceRec-WithOut-Training/2/Banca_P-Canberra banca/1@P siebenkopf/ROC/14,siebenkopf/EER_HTER/8
siebenkopf/siebenkopf/FaceRec-WithOut-Training/2/Banca_P-PhaseDiff banca/1@P siebenkopf/ROC/14,siebenkopf/EER_HTER/8

This table shows the number of times this algorithm has been successfully run using the given environment. Note this does not provide sufficient information to evaluate if the algorithm will run when submitted to different conditions.

Terms of Service | Contact Information | BEAT platform version 2.2.1b0 | © Idiap Research Institute - 2013-2024