Computes image-quality features for every frame of input video.

Forked from ivana7c/crop_face/1

This algorithm is a legacy one. The API has changed since its implementation. New versions and forks will need to be updated.
This algorithm is splittable

Algorithms have at least one input and one output. All algorithm endpoints are organized in groups. Groups are used by the platform to indicate which inputs and outputs are synchronized together. The first group is automatically synchronized with the channel defined by the block in which the algorithm is deployed.

Group: main

Endpoint Name Data Format Nature
video system/array_4d_uint8/1 Input
iqm_feature_set system/array_2d_floats/1 Output
xxxxxxxxxx
714
 
1
import numpy as np
2
import scipy as sp
3
import scipy.signal as ssg
4
import scipy.ndimage.filters as snf
5
6
import bob
7
import bob.io.base
8
import bob.io.video
9
import bob.ip.color
10
import bob.ip.base
11
12
'''
13
functions for computing image-quality features
14
'''
15
16
"""
17
Main function to be called, to extract a set of image quality-features computed for the input image
18
@param image: 2d numpy array. Should contain input image of size [M,N] (i.e. M rows x N cols).
19
@return featSet: a tuple of float-scalars, each representing one image-quality measure.
20
"""
21
def computeQualityFeatures(image, gwin):
22
    
23
    smoothed = ssg.convolve2d(image, gwin, boundary='symm', mode='same') 
24
25
    return imageQualityMeasures(image, smoothed)
26
27
28
"""
29
actually computes similarities between the two input images, but also returns some descriptors of the reference-image that are independent of any other image.
30
Returns a tuple of 18 values, each of which is a float-scalar. 
31
The quality measures computed in this function correspond to the Image-quality features discussed in Galbally et al., 2014.
32
"""
33
def imageQualityMeasures(refImage, testImage):
34
    assert len(refImage.shape)==2, "refImage should be a 2D array"
35
    assert len(testImage.shape)==2, "testImage should be a 2D array"
36
    assert (refImage.shape[0] == testImage.shape[0]), "The two images should have the same width"
37
    assert (refImage.shape[1] == testImage.shape[1]), "The two images should have the same height"
38
    
39
    diffImg = refImage.astype(np.float) - testImage.astype(np.float) 
40
    diffSq = np.square(diffImg)
41
    sumDiffSq = np.sum(diffSq)
42
    absDiffImg = np.absolute(diffImg)
43
    
44
    refSq = np.square(refImage.astype(np.float))
45
    sumRefSq = np.sum(refSq)
46
    
47
    numPx = refImage.shape[0]*refImage.shape[1] #number of pixels in each image
48
    maxPxVal = 255.0;
49
    
50
    #1 MSE
51
    mse = float(sumDiffSq)/float(numPx)
52
    
53
    #2 PSNR
54
    psnr = np.inf
55
    if mse>0:
56
        psnr = 10.0*np.log10(maxPxVal*maxPxVal/mse)
57
    
58
    #3 AD: Average difference
59
    ad = float(np.sum(diffImg))/float(numPx)
60
    
61
    #4 SC: structural content
62
    testSq = np.square(testImage.astype(np.float))
63
    sumTestSq = np.sum(testSq)
64
    sc=np.inf
65
    if sumTestSq>0:
66
        sc = float(sumRefSq)/float(sumTestSq)
67
    
68
    #5 NK: normalized cross-correlation
69
    imgProd = refImage * testImage # element-wise product
70
    nk = float(np.sum(imgProd))/float(sumRefSq)
71
    
72
    #6 MD: Maximum difference
73
    md = float(np.amax(absDiffImg))
74
    
75
    #7 LMSE: Laplacian MSE
76
    #scipy implementation of laplacian is different from Matlab's version, especially at the image-borders
77
    # To significant differences between scipy...laplace and Matlab's del2() are:
78
    #    a. Matlab del2() divides the convolution result by 4, so the ratio (scipy.laplace() result)/(del2()-result) is 4
79
    #    b. Matlab does a different kind of processing at the boundaries, so the results at the boundaries are different in the 2 calls.
80
    #In Galbally's Matlab code, there is a factor of 4, which I have dropped (no difference in result), 
81
    #because this is implicit in scipy.ndimage.filters.laplace()
82
    op = snf.laplace(refImage, mode='reflect') #mode can be 'wrap', 'reflect', 'nearest', 'mirror', or ['constant' with a specified value]
83
    opSq = np.square(op)
84
    sum_opSq = np.sum(opSq)
85
    tmp1 = (op - (snf.laplace(testImage, mode='reflect')))
86
    num_op = np.square(tmp1)
87
    lmse = float(np.sum(num_op))/float(sum_opSq)
88
    
89
    #8 NAE: normalized abs. error
90
    sumRef = np.sum(np.absolute(refImage))
91
    nae = float(np.sum(absDiffImg))/float(sumRef)
92
    
93
    #9 SNRv: SNR in db
94
    snrv = 10.0*np.log10(float(sumRefSq)/float(sumDiffSq))
95
    
96
    #10 RAMDv: R-averaged max diff (r=10)
97
    #implementation below is same as what Galbally does in Matlab
98
    r=10
99
    sorted = np.sort(diffImg.flatten())[::-1] #the [::-1] flips the sorted vector, so that it is in descending order
100
    topsum = np.sum(sorted[0:r])
101
    ramdv = np.sqrt(float(topsum)/float(r))
102
    
103
    #11,12: MAS: Mean Angle Similarity, MAMS: Mean Angle-Magnitude Similarity
104
    mas, mams = angleSimilarity(refImage, testImage, diffImg) 
105
    
106
    fftRef = np.fft.fft2(refImage)
107
    fftTest = np.fft.fft2(testImage)
108
      
109
    #13, 14: SME: spectral magnitude error; SPE: spectral phase error
110
    sme, spe = spectralSimilarity(refImage, testImage) 
111
    
112
    #15 TED: Total edge difference
113
    #ted = edgeSimilarity(refImage, testImage)
114
115
    #16 TCD: Total corner difference
116
    #tcd = cornerSimilarity(refImage, testImage)
117
    
118
    #17, 18: GME: gradient-magnitude error; GPE: gradient phase error  
119
    gme, gpe = gradientSimilarity(refImage, testImage)
120
    
121
    #19 SSIM
122
    ssim, _ = SSIM(refImage, testImage)
123
    
124
    #20 VIF
125
    vif = VIFp(refImage, testImage)
126
    
127
    #21,22,23,24,25: , RRED, BIQI, JQI, NIQE: these parameters are not implemented in this code.
128
    
129
    #26 HLFI: high-low frequency index (implemented as done by Galbally in Matlab).
130
    hlfi=HLFreq_Index(fftRef, refImage.shape[1])
131
    
132
    return (mse, psnr, ad, sc, nk, md, lmse, nae, snrv, ramdv, mas, mams, sme, gme, gpe, ssim, vif, hlfi)
133
134
135
"""
136
SSIM: Structural Similarity index between two gray-level images. The dynamic range is assumed to be 0..255.
137
Ref:Z. Wang, A.C. Bovik, H.R. Sheikh and E.P. Simoncelli: 
138
    "Image Quality Assessment: From error measurement to Structural Similarity"
139
    IEEE Trans. on Image Processing, 13(1), 01/2004
140
    @param refImage: 2D numpy array (reference image)
141
    @param testImage: 2D numpy array (test image)
142
    Both input images should have the same dimensions. This is assumed, and not verified in this function
143
    @return ssim: float-scalar. The mean structural similarity between the 2 input images.
144
    @return ssim_map: the SSIM index map of the test image (this map is smaller than the test image).
145
"""
146
def SSIM(refImage, testImage):
147
    M=refImage.shape[0]
148
    N=refImage.shape[1]
149
        
150
    winSz=11 #window size for gaussian filter
151
    winSgm = 1.5 # sigma for gaussian filter
152
    
153
    #input image should be at least 11x11 in size.
154
    if(M<winSz) or (N<winSz):
155
        ssim_index = -np.inf
156
        ssim_map = -np.inf
157
        
158
        return ssim_index, ssim_map
159
    
160
    #construct the gaussian filter
161
    gwin = gauss_2d((winSz, winSz), winSgm)
162
    
163
    K1 = 0.01 # constants taken from the initial matlab implementation provided by Bovik's lab.
164
    K2 = 0.03
165
    L = 255 #dynamic range.
166
    
167
    C1 = (K1*L)*(K1*L)
168
    C2 = (K2*L)*(K2*L)
169
    
170
    #ssg is scipy.signal
171
    mu1 = ssg.convolve2d(refImage, gwin, mode='valid')
172
    mu2 = ssg.convolve2d(testImage, gwin, mode='valid')
173
    
174
    mu1Sq = mu1*mu1
175
    mu2Sq = mu2*mu2
176
    mu1_mu2 = mu1*mu2
177
    
178
    sigma1_sq = ssg.convolve2d((refImage*refImage), gwin, mode='valid') - mu1Sq
179
    sigma2_sq = ssg.convolve2d((testImage*testImage), gwin, mode='valid') - mu1Sq
180
    sigma12 = ssg.convolve2d((refImage*testImage), gwin, mode='valid') - mu1_mu2
181
    
182
    assert (C1>0 and C2 > 0), "Conditions for computing ssim with this code are not met. Set the Ks and L to values > 0."
183
    num1 = (2.0*mu1_mu2 + C1) *(2.0*sigma12 + C2) 
184
    den1 = (mu1Sq + mu2Sq+C1)*(sigma1_sq + sigma2_sq +C2)
185
    ssim_map = num1/den1
186
187
    ssim = np.average(ssim_map)
188
    
189
    return ssim, ssim_map
190
191
192
"""
193
VIF: Visual Information Fidelity measure.
194
Ref: H.R. Sheikh and A.C. Bovik: "Image Information and Visual Quality", IEEE Trans. Image Processing.
195
Adapted from Galbally's matlab code, which was provided by Bovik et al's LIVE lab.
196
    @param refImage: 2D numpy array (reference image)
197
    @param testImage: 2D numpy array (test image)
198
    Both input images should have the same dimensions. This is assumed, and not verified in this function
199
    @return vifp: float-scalar. Measure of visual information fidelity between the 2 input images
200
"""
201
def VIFp(refImage, testImage):
202
    sigma_nsq = 2.0
203
    num=0
204
    den=0
205
    
206
    #sc is scale, taking values (1,2,3,4)
207
    for sc in range(1,5):
208
        N=(2**(4-sc+1))+1
209
        win = gauss_2d((N,N), (float(N)/5.0))
210
        
211
        #ssg is scipy.signal
212
        
213
        if sc > 1 :
214
            refImage = ssg.convolve2d(refImage, win, mode='valid')
215
            testImage = ssg.convolve2d(testImage, win, mode='valid')
216
            refImage = refImage[::2, ::2]           #downsample by factor 2 in each direction
217
            testImage = testImage[::2, ::2]
218
        
219
        mu1 = ssg.convolve2d(refImage, win, mode='valid')
220
        mu2 = ssg.convolve2d(testImage, win, mode='valid')
221
        mu1Sq = mu1*mu1
222
        mu2Sq = mu2*mu2
223
        mu1_mu2 = mu1*mu2
224
        
225
        sigma1_sq = ssg.convolve2d((refImage*refImage), win, mode='valid') - mu1Sq
226
        sigma2_sq = ssg.convolve2d((testImage*testImage), win, mode='valid') - mu2Sq
227
        sigma12 = ssg.convolve2d((refImage*testImage), win, mode='valid') - mu1_mu2
228
        
229
        sigma1_sq[sigma1_sq<0]=0        #set negative filter responses to 0.
230
        sigma2_sq[sigma2_sq<0]=0
231
        
232
        g = sigma12 / (sigma1_sq + 1e-10)
233
        sv_sq = sigma2_sq - g*sigma12;
234
        
235
        g[(sigma1_sq < 1e-10)]=0
236
        sv_sq[sigma1_sq < 1e-10] = sigma2_sq[sigma1_sq < 1e-10]
237
        sigma1_sq[sigma1_sq<1e-10]=0
238
        
239
        g[(sigma2_sq < 1e-10)]=0
240
        sv_sq[sigma2_sq < 1e-10] =0
241
        
242
        sv_sq[g<0]=sigma2_sq[g<0]
243
        g[g<0]=0
244
        sv_sq[sv_sq <= 1e-10] = 1e-10     #sic. As implemented in the original matlab version...
245
        
246
        m1 = g*g*sigma1_sq
247
        m2 = sv_sq+sigma_nsq
248
        m3 = np.log10(1 + m1/m2)
249
        
250
        m4 = np.log10(1 + (sigma1_sq/sigma_nsq))
251
        
252
        num += np.sum(m3)
253
        den += np.sum(m4)
254
    
255
    vifp = num/den
256
    return vifp
257
258
259
"""
260
HLFI: relative difference between high- and low-frequency energy in image.
261
Ref: I. Avcibas, N. Memon, B. Sankur: "Steganalysis using image quality metrics", IEEE Trans. Image Processing, 12, 2003.
262
@param imgFFT: 2D numpy array of complex numbers, representing Fourier transform of test image.
263
@param ncols: int. Number of columns in image.
264
@return float-scalar.
265
"""
266
def HLFreq_Index(imgFFT, ncols):
267
268
    N= ncols
269
    colHalf = int(round(N/2))  #round it up
270
    freqSel = 0.15
271
    
272
    freqCol = round(freqSel*N)
273
    lowFreqColHalf = int(round(freqCol/2.0)) 
274
    
275
    fftRes = imgFFT 
276
    fftMag = np.abs(fftRes)
277
    totalEnergy = np.sum(fftMag)
278
279
    
280
    lowIdx = colHalf-lowFreqColHalf
281
    hiIdx = colHalf + lowFreqColHalf
282
283
    LowFreqMag = fftMag[:, lowIdx:hiIdx]
284
    lowFreqMagTotal = np.sum(LowFreqMag)
285
    
286
    fftMag[:, lowIdx:hiIdx]=0
287
    highFreqMagTotal = np.sum(fftMag)
288
289
    
290
    highLowFreqIQ = np.abs(lowFreqMagTotal - highFreqMagTotal)/float(totalEnergy)
291
    
292
    return highLowFreqIQ
293
    
294
        
295
     
296
297
"""
298
Image similarity based on gradient. Computes the mean phase and magnitude difference of gradient between input reference and test images.
299
Ref: I. Avcibas, N. Memon, B. Sankur: "Steganalysis using image quality metrics", IEEE Trans. Image Processing, 12, 2003.
300
    @param refImage: 2D numpy array (reference image)
301
    @param testImage: 2D numpy array (test image)
302
    Both input images should have the same dimensions. This is assumed, and not verified in this function.
303
    @return difGradMag: float-scalar. Mean difference in gradient-magnitude.
304
    @return difGradPhase: float-scalar. Mean difference in gradient-phase.
305
"""
306
def gradientSimilarity(refImage, testImage):
307
    
308
    numPx = refImage.shape[0]*refImage.shape[1] # we assume that testImage is of the same shape as refImage
309
    
310
    #compute gradient (a la matlab) for reference image
311
    refGrad=np.gradient(refImage,5,5) #5: spacing of 5 pixels between 2 sites of grad. evaluation.
312
    
313
    refReal = refGrad[0]
314
    refImag = refGrad[1]
315
    refGradComplex = refReal + 1j*refImag
316
    
317
    refMag=np.abs(refGradComplex)
318
    refPhase = np.arctan2(refImag, refReal)
319
320
    #compute gradient for test image
321
    testGrad=np.gradient(testImage,5) #5: spacing of 5 pixels between 2 sites of grad. evaluation. It applies to both dims.
322
    testReal = testGrad[0]
323
    testImag = testGrad[1]
324
    testGradComplex = testReal + 1j*testImag
325
    
326
    testMag=np.abs(testGradComplex)
327
    testPhase = np.arctan2(testImag, testReal)    
328
    
329
    absPhaseDiff = np.abs(refPhase - testPhase) 
330
    difGradPhase = (np.sum(absPhaseDiff))/float(numPx)
331
    
332
    absMagDiff = np.abs(refMag - testMag) 
333
    difGradMag = float(np.sum(absMagDiff))/float(numPx)
334
    
335
    return difGradMag, difGradPhase
336
337
338
"""
339
find local maxima using 3x3 mask.
340
Used in cornerSimilarity()
341
Should produce results very similar to matlabs imregionalmax()
342
@param img: 2d numpy array. Image-like, containing a 'cornerness'-index for every pixel.
343
@return regmax: 2d numpy array. Binary image showing corners (which are regions of local maxima in input image).
344
"""
345
def regionalmax(img):
346
    h = img.shape[0]
347
    w = img.shape[1]
348
    
349
    #extend input image borders by repeating border-values
350
    b = np.zeros((img.shape[0]+2,img.shape[1]+2))
351
    b[1:-1,1:-1] = img
352
    b[0,:]=b[1,:]
353
    b[:,0]=b[:,1]
354
    b[-1,:]=b[-2,:]
355
    b[:,-1]=b[:,-2]
356
    
357
    
358
    regmax = np.zeros((h,w), dtype='uint8') #will contain the output bitmap showing local maxima.
359
    
360
    for i in range(1, h+1):
361
        for j in range(1, w+1):
362
            subim = b[i-1:i+2, j-1:j+2]
363
            lmax = np.amax(subim)
364
            lmin = np.amin(subim)
365
            if b[i,j] == lmax and b[i,j]>lmin : 
366
                regmax[i-1,j-1] = 1
367
                        
368
    for i in range(1,h):
369
        for j in range(w):
370
            if regmax[i,j]==1:
371
                imin=i-1
372
                if imin<0: imin=0
373
                imax=i+2
374
                if imax>h: imax=h
375
                for k in range(imin, imax):
376
                    jmin=j-1
377
                    if jmin<0: jmin=0
378
                    jmax = j+2
379
                    if jmax>w: jmax = w
380
                    for l in range(jmin, jmax):
381
                        if(img[k,l]==img[i,j]):
382
                            regmax[k,l]=1
383
    
384
    return regmax
385
386
387
388
"""
389
returns a 'cornerness' image, where each pixel-value specifies the 'degree of cornerness' of the corresponding pixel in input image
390
The 'cornerness' image is of size (N-2, M-2) for an input image of size (N,M) (no cornerness computed for the border pixel of input.)
391
@param image: 2d numpy array. Input image for which cornerness needs to be computed.
392
@return cornerness: 2d numpy array giving a 'cornerness'-value for the input image.
393
"""
394
def cornerMetric(image):
395
    image = image.astype(np.float)
396
   
397
    sensitivity_factor = 0.4
398
    gwin = gauss_2d((5,5), 1.5)
399
    
400
    vfilt = np.array([-1,0,1], ndmin=2)
401
    hfilt = vfilt.T
402
    A = ssg.convolve2d(image, vfilt, boundary='symm', mode='same') 
403
    B = ssg.convolve2d(image, hfilt, boundary='symm', mode='same')
404
    #crop out the valid portions of the filter-response (same size for both A and B)
405
    A = A[1:-2, 1:-2]
406
    B = B[1:-2, 1:-2]
407
    
408
    #compute products of A, B, C
409
    C = A*B
410
    A = A*A
411
    B = B*B
412
    
413
    #filter A, B, and C
414
    A = ssg.convolve2d(A, gwin, boundary='symm', mode='valid')
415
    B = ssg.convolve2d(B, gwin, boundary='symm', mode='valid')
416
    C = ssg.convolve2d(C, gwin, boundary='symm', mode='valid')
417
418
    ABsum = A + B
419
    cornerness = (A*B) - (C*C) - sensitivity_factor *(ABsum*ABsum)
420
    
421
    return cornerness
422
423
424
'''
425
compute the corner-based similarity between 2 images (how close are the numbers of corners found in the two images?).
426
returns an index between 0 and 1. The smaller the better.
427
@param refImage: 2D numpy array (reference image)
428
@param testImage: 2D numpy array (test image)
429
@return float-scalar.
430
'''
431
def cornerSimilarity(refImage, testImage):
432
    
433
    C = cornerMetric(refImage)
434
    C_peaks = regionalmax(C)
435
    
436
    #imshow(C_peaks)
437
    
438
    CG = cornerMetric(testImage)
439
    CG_peaks = regionalmax(CG)
440
    
441
    nCornersRef = np.sum(C_peaks)
442
    nCornersTest = np.sum(CG_peaks)
443
    #print 'CornerSim::', nCornersRef, nCornersTest
444
    
445
    maxCorners = max(nCornersRef, nCornersTest)
446
    
447
    qCornersDiff = np.fabs(nCornersRef - nCornersTest)/float(maxCorners)
448
    
449
    return qCornersDiff
450
451
452
"""
453
Similarity between the edge-maps of the two input images.
454
Ref: I. Avcibas, N. Memon, B. Sankur: "Steganalysis using image quality metrics", IEEE Trans. Image Processing, 12, 2003.
455
@param refImage: 2D numpy array (reference image)
456
@param testImage: 2D numpy array (test image)
457
@return float-scalar
458
"""
459
def edgeSimilarity(refImage, testImage):
460
    
461
    #bob..sobel returns filter-responses which need to be thresholded to get the edge-map
462
    thinning=1
463
    refImage=refImage.astype(np.float)
464
    
465
    #compute edge map for reference image
466
    refSobel_sep = bob.ip.base.sobel(refImage) #returns 3D image. 1st dim is the edge-direction. 1st component is vertical; 2nd component is hor. responses
467
    refSobelX = refSobel_sep[0,:,:]
468
    refSobelY = refSobel_sep[1,:,:]
469
    refEdge = edgeThinning(refSobelX[:,:], refSobelY[:,:], thinning)
470
    
471
    
472
    #compute edge map for test image
473
    testSobel_sep = bob.ip.base.sobel(testImage)
474
    testSobelX = testSobel_sep[0,:,:]
475
    testSobelY = testSobel_sep[1,:,:]
476
477
    testEdge = edgeThinning(testSobelX[:,:], testSobelY[:,:], thinning)
478
479
    numPx = refImage.shape[0]*refImage.shape[1]
480
    numRefEdgePx = np.sum(refEdge)
481
    numTestEdgePx = np.sum(testEdge)
482
    qEdgeD = np.abs(numRefEdgePx - numTestEdgePx)/float(numPx)
483
484
    return qEdgeD
485
486
487
"""
488
    function to perform edge-thining in the same way as done in Matlab. Called in edgeSimilarity()
489
    Returns a binary edge-map (uint8 image).
490
    @param  bx: vertical edge-filter responses (for example, response of 1 of the two Sobel filters)
491
    @param  by: horizontal edge-filter responses 
492
    @param  thinning: [0,1]. Default:1, implies 'do edge-thinning'. If set to 0, no edge-thinning is done.
493
    bx and by should be of the same shape
494
"""
495
def edgeThinning(bx, by, thinning=1):
496
    assert(len(bx.shape)==2) and (len(by.shape)==2), "bx and by should be 2D arrays."
497
    assert(bx.shape[0]==by.shape[0]) and (bx.shape[1]==by.shape[1]), "bx and by should have the same shape."
498
    m = bx.shape[0]
499
    n = by.shape[1]
500
    e = np.zeros([m,n], dtype=np.uint8)     # will contain the resulting edge-map.
501
    
502
#     print 'bx', bx.shape
503
#     print 'by', by.shape
504
    #compute the edge-strength from the 2 directional filter-responses
505
    b = np.sqrt(bx*bx + by*by)
506
    
507
    #compute the threshold a la Matlab (as described in "Digital Image Processing" book by W.K. Pratt.
508
    scale=4
509
    cutoff = scale*np.mean(b)
510
    #thresh = np.sqrt(cutoff)
511
    
512
    myEps = np.spacing(1)*100.0 #np.spacing(1) is the same as eps in matlab.
513
    #compute the edge-map a la Matlab
514
    for r in range(m):
515
        for c in range(n):
516
            if thinning:
517
                if r<0 or r>(m-1) or (c-1)<0 :
518
                    b1=True
519
                else:
520
                    b1=(b[r,c-1] < b[r,c])
521
                
522
                if(r<0) or  r>(m-1)  or  (c+1)>(n-1) :
523
                    b2=True
524
                else:
525
                    b2 = (b[r,c] > b[r,c+1])
526
                
527
                if (c<0) or  c>(n-1)  or  (r-1)<0 :
528
                    b3=True
529
                else:
530
                    b3=(b[r,c] > b[r-1,c])
531
                
532
                if(c<1) or  c>(n-1)  or  (r+1)>(m-1) :
533
                    b4=True
534
                else:
535
                    b4=(b[r,c]> b[r+1, c])
536
                
537
                c1 = (b[r,c]>cutoff)
538
                c2 = ((bx[r,c]>= (by[r,c]-myEps)) & b1 & b2)
539
                c3 = ((by[r,c]>= (bx[r,c]-myEps)) & b3 & b4)
540
541
                e[r,c] = c1 & (c2 | c3)
542
            else:
543
                e[r,c] = (b[r,c]>cutoff)
544
    
545
    return e
546
547
548
"""
549
@param refImage: 2D numpy array (reference image)
550
@param testImage: 2D numpy array (test image)
551
@return sme: float-scalar. Mean difference in magnitudes of spectra of the two images.
552
@return spe: float-scalar. Mean difference in phases of spectra of the two images.
553
"""
554
#def spectralSimilarity(fftRef, fftTest, numPx):
555
def spectralSimilarity(refImage, testImage):
556
    
557
    #assume that ref and test images have the same shape
558
    rows=refImage.shape[0]
559
    cols=refImage.shape[1]
560
    numPx = rows*cols
561
    fftRef = np.fft.rfft2(refImage)
562
    fftTest = np.fft.rfft2(testImage)
563
    
564
    refMag=np.abs(fftRef)
565
    testMag=np.abs(fftTest)
566
    absMagDiff = np.abs(refMag - testMag)
567
    #SME: spectral magnitude error
568
    sme = np.sum(absMagDiff * absMagDiff)/float(numPx)
569
    
570
    #SPE: spectral phase error
571
    refPhase = np.angle(fftRef)
572
    testPhase = np.angle(fftTest)
573
    absPhaseDiff = np.abs(refPhase - testPhase)
574
    spe = np.sum(absPhaseDiff * absPhaseDiff)/float(numPx)
575
576
    return sme, spe
577
578
579
"""
580
Cosine-Similarity between the the rows of the two input images.
581
Ref: I. Avcibas, N. Memon, B. Sankur: "Steganalysis using image quality metrics", IEEE Trans. Image Processing, 12, 2003.
582
@param refImage: 2D numpy array (reference image)
583
@param testImage: 2D numpy array (test image)
584
@param diffImage: 2D numpy array. Difference between refImage and testImage. Not strictly necessary as input but precomputed here, to save computation time.
585
@return mas: float-scalar. Mean angle-similarity.
586
@return mams: float-scalar. Mean angle-magnitude similarity.
587
"""
588
def angleSimilarity(refImage, testImage, diffImage):
589
    mas=None
590
    mams=None
591
    
592
    numPx = refImage.shape[0]*refImage.shape[1]
593
    
594
    refNorm = np.linalg.norm(refImage, axis=1)
595
    testNorm = np.linalg.norm(testImage, axis=1)
596
    thetaVec = np.zeros([refImage.shape[0], 1])
597
    diffNorm = np.linalg.norm(diffImage, axis=1)
598
    magnitVec = diffNorm/255.0 #Galbally divides by sqrt(255**2)
599
    magnitVec = np.reshape(magnitVec, (refImage.shape[0], 1))
600
    
601
    for i in range(refImage.shape[0]):
602
        refR = refImage[i,:]
603
        testR = testImage[i,:]
604
        cosTheta = np.dot(refR, testR)/(refNorm[i]*testNorm[i])
605
        if(cosTheta < -1.0): cosTheta = -1.0
606
        if(cosTheta > 1.0): cosTheta = 1.0
607
        theta = np.arccos(cosTheta)
608
        thetaVec[i]=theta
609
    
610
    tmp2 = thetaVec*2.0/np.pi
611
    
612
    #MAS: mean angle similarity
613
    mas = 1.0 -( sum(tmp2) / float(numPx) )
614
    
615
    tmp3 = 1.0 - tmp2 
616
    tmp4 = 1.0 - magnitVec    
617
    chi = 1.0 - (tmp3 * tmp4)
618
    #MAMS: mean angle-magnitude similarity 
619
    mams = sum(chi)/float(numPx)
620
621
    return (float(mas), float(mams))
622
623
624
625
'''
626
Returns a 2D gaussian-filter matrix
627
equivalent of matlab fspecial('gaussian'...)
628
629
@param shape: tuple defining the size of the desired filter in each dimension. Elements of tuple should be 2 positive odd-integers.
630
@param sigma: float-scalar
631
@return h: 2D numpy array. Contains weights for 2D gaussian filter.
632
'''
633
def gauss_2d(shape=(3, 3), sigma=0.5): 
634
    """ 
635
    2D gaussian mask - should give the same result as MATLAB's 
636
    fspecial('gaussian',[shape],[sigma]) 
637
    """ 
638
    m, n = [(ss-1.)/2. for ss in shape] 
639
    y, x = np.ogrid[-m:m+1, -n:n+1] 
640
    h = np.exp(-(x*x + y*y) / (2.*sigma*sigma)) 
641
    h[h < np.finfo(h.dtype).eps*h.max()] = 0 
642
    sumh = h.sum() 
643
    if sumh != 0: 
644
        h /= sumh 
645
    return h 
646
647
648
'''
649
Matlab-like RGB to gray...
650
    @param: rgbImage : numpy array for the form: [3,h,w] where h is the height of the image and w is the width of the image.
651
    Returns a y-image in floating-point format (range [(16/255) .. (235/255)])
652
'''
653
def matlab_rgb2gray(rgbImage):
654
    #g1 = 0.299*rgbFrame[0,:,:] + 0.587*rgbFrame[1,:,:] + 0.114*rgbFrame[2,:,:] #standard coeffs in CCIR601
655
    
656
    #this is how it's done in matlab...
657
    rgbImage = rgbImage / 255.0
658
    C0 = 65.481/255.0
659
    C1 = 128.553/255.0
660
    C2 = 24.966/255.0
661
    scaleMin = 16.0/255.0
662
    gray = scaleMin + (C0*rgbImage[0,:,:] + C1*rgbImage[1,:,:] + C2*rgbImage[2,:,:])    
663
664
    return gray
665
666
667
'''
668
computes image-quality features for a set of frames comprising a video.
669
    @param video4d: a '4d' video (N frames, each frame representing an r-g-b image).
670
    returns  a set of feature-vectors, 1 vector per frame of video4d
671
'''
672
def computeVideoIQM(video4d):
673
    numframes = video4d.shape[0]
674
    
675
    gwin = gauss_2d((3,3), 0.5)
676
    
677
    #process first frame separately, to get the no. of iqm features
678
    f=0
679
    rgbFrame = video4d[f,:,:,:]
680
    grayFrame = matlab_rgb2gray(rgbFrame) #compute gray-level image for input color-frame
681
    iqmSet = computeQualityFeatures(grayFrame, gwin)
682
    numIQMs = len(iqmSet)
683
    #now initialize fset to store iqm features for all frames of input video.
684
    fset = np.zeros([numframes, numIQMs])
685
    bobQFeats = np.asarray(iqmSet) # computeQualityFeatures() returns a tuple
686
    fset[f,:] = bobQFeats
687
    
688
    for f in range(1,numframes):
689
        rgbFrame = video4d[f,:,:,:]
690
        grayFrame = matlab_rgb2gray(rgbFrame) #compute gray-level image for input color-frame
691
        bobQFeats = np.asarray(computeQualityFeatures(grayFrame, gwin)) # computeQualityFeatures() returns a tuple
692
        fset[f,:] = bobQFeats
693
    
694
    return fset
695
696
697
698
class Algorithm:
699
700
    def __init__(self):
701
        pass
702
703
    def process(self, inputs, outputs):
704
705
        video = inputs["video"].data.value
706
        iqmFeats = computeVideoIQM(video)
707
        
708
709
        outputs["iqm_feature_set"].write({
710
            'value': iqmFeats
711
        })  
712
713
        return True
714

The code for this algorithm in Python
The ruler at 80 columns indicate suggested POSIX line breaks (for readability).
The editor will automatically enlarge to accomodate the entirety of your input
Use keyboard shortcuts for search/replace and faster editing. For example, use Ctrl-F (PC) or Cmd-F (Mac) to search through this box

Given an input video consisting of N frames, this algorithm returns a Nxd floating-point array containing one d-dimensional feature-vector for each frame. The feature vector consists of various image-quality measures computed for the frame.

This algorithm relies on the Bob library.

Experiments

Updated Name Databases/Protocols Analyzers
sbhatta/sbhatta/iqm-face-antispoofing-test/2/replay2-antispoofing-iqm-lda replay/2@grandtest sbhatta/iqm_spoof_eer_analyzer/9
Created with Raphaël 2.1.2[compare]ivana7c/crop_face/1sbhatta/iqm_features/12014Aug29anjos/crop_face/12015Nov122016Jan15

This table shows the number of times this algorithm has been successfully run using the given environment. Note this does not provide sufficient information to evaluate if the algorithm will run when submitted to different conditions.

Terms of Service | Contact Information | BEAT platform version 2.2.1b0 | © Idiap Research Institute - 2013-2025