Computes image-quality features for every frame of input video.
Forked from ivana7c/crop_face/1
Algorithms have at least one input and one output. All algorithm endpoints are organized in groups. Groups are used by the platform to indicate which inputs and outputs are synchronized together. The first group is automatically synchronized with the channel defined by the block in which the algorithm is deployed.
Endpoint Name | Data Format | Nature |
---|---|---|
video | system/array_4d_uint8/1 | Input |
iqm_feature_set | system/array_2d_floats/1 | Output |
xxxxxxxxxx
import numpy as np
import scipy as sp
import scipy.signal as ssg
import scipy.ndimage.filters as snf
import bob
import bob.io.base
import bob.io.video
import bob.ip.color
import bob.ip.base
'''
functions for computing image-quality features
'''
"""
Main function to be called, to extract a set of image quality-features computed for the input image
@param image: 2d numpy array. Should contain input image of size [M,N] (i.e. M rows x N cols).
@return featSet: a tuple of float-scalars, each representing one image-quality measure.
"""
def computeQualityFeatures(image, gwin):
smoothed = ssg.convolve2d(image, gwin, boundary='symm', mode='same')
return imageQualityMeasures(image, smoothed)
"""
actually computes similarities between the two input images, but also returns some descriptors of the reference-image that are independent of any other image.
Returns a tuple of 18 values, each of which is a float-scalar.
The quality measures computed in this function correspond to the Image-quality features discussed in Galbally et al., 2014.
"""
def imageQualityMeasures(refImage, testImage):
assert len(refImage.shape)==2, "refImage should be a 2D array"
assert len(testImage.shape)==2, "testImage should be a 2D array"
assert (refImage.shape[0] == testImage.shape[0]), "The two images should have the same width"
assert (refImage.shape[1] == testImage.shape[1]), "The two images should have the same height"
diffImg = refImage.astype(np.float) - testImage.astype(np.float)
diffSq = np.square(diffImg)
sumDiffSq = np.sum(diffSq)
absDiffImg = np.absolute(diffImg)
refSq = np.square(refImage.astype(np.float))
sumRefSq = np.sum(refSq)
numPx = refImage.shape[0]*refImage.shape[1] #number of pixels in each image
maxPxVal = 255.0;
#1 MSE
mse = float(sumDiffSq)/float(numPx)
#2 PSNR
psnr = np.inf
if mse>0:
psnr = 10.0*np.log10(maxPxVal*maxPxVal/mse)
#3 AD: Average difference
ad = float(np.sum(diffImg))/float(numPx)
#4 SC: structural content
testSq = np.square(testImage.astype(np.float))
sumTestSq = np.sum(testSq)
sc=np.inf
if sumTestSq>0:
sc = float(sumRefSq)/float(sumTestSq)
#5 NK: normalized cross-correlation
imgProd = refImage * testImage # element-wise product
nk = float(np.sum(imgProd))/float(sumRefSq)
#6 MD: Maximum difference
md = float(np.amax(absDiffImg))
#7 LMSE: Laplacian MSE
#scipy implementation of laplacian is different from Matlab's version, especially at the image-borders
# To significant differences between scipy...laplace and Matlab's del2() are:
# a. Matlab del2() divides the convolution result by 4, so the ratio (scipy.laplace() result)/(del2()-result) is 4
# b. Matlab does a different kind of processing at the boundaries, so the results at the boundaries are different in the 2 calls.
#In Galbally's Matlab code, there is a factor of 4, which I have dropped (no difference in result),
#because this is implicit in scipy.ndimage.filters.laplace()
op = snf.laplace(refImage, mode='reflect') #mode can be 'wrap', 'reflect', 'nearest', 'mirror', or ['constant' with a specified value]
opSq = np.square(op)
sum_opSq = np.sum(opSq)
tmp1 = (op - (snf.laplace(testImage, mode='reflect')))
num_op = np.square(tmp1)
lmse = float(np.sum(num_op))/float(sum_opSq)
#8 NAE: normalized abs. error
sumRef = np.sum(np.absolute(refImage))
nae = float(np.sum(absDiffImg))/float(sumRef)
#9 SNRv: SNR in db
snrv = 10.0*np.log10(float(sumRefSq)/float(sumDiffSq))
#10 RAMDv: R-averaged max diff (r=10)
#implementation below is same as what Galbally does in Matlab
r=10
sorted = np.sort(diffImg.flatten())[::-1] #the [::-1] flips the sorted vector, so that it is in descending order
topsum = np.sum(sorted[0:r])
ramdv = np.sqrt(float(topsum)/float(r))
#11,12: MAS: Mean Angle Similarity, MAMS: Mean Angle-Magnitude Similarity
mas, mams = angleSimilarity(refImage, testImage, diffImg)
fftRef = np.fft.fft2(refImage)
fftTest = np.fft.fft2(testImage)
#13, 14: SME: spectral magnitude error; SPE: spectral phase error
sme, spe = spectralSimilarity(refImage, testImage)
#15 TED: Total edge difference
#ted = edgeSimilarity(refImage, testImage)
#16 TCD: Total corner difference
#tcd = cornerSimilarity(refImage, testImage)
#17, 18: GME: gradient-magnitude error; GPE: gradient phase error
gme, gpe = gradientSimilarity(refImage, testImage)
#19 SSIM
ssim, _ = SSIM(refImage, testImage)
#20 VIF
vif = VIFp(refImage, testImage)
#21,22,23,24,25: , RRED, BIQI, JQI, NIQE: these parameters are not implemented in this code.
#26 HLFI: high-low frequency index (implemented as done by Galbally in Matlab).
hlfi=HLFreq_Index(fftRef, refImage.shape[1])
return (mse, psnr, ad, sc, nk, md, lmse, nae, snrv, ramdv, mas, mams, sme, gme, gpe, ssim, vif, hlfi)
"""
SSIM: Structural Similarity index between two gray-level images. The dynamic range is assumed to be 0..255.
Ref:Z. Wang, A.C. Bovik, H.R. Sheikh and E.P. Simoncelli:
"Image Quality Assessment: From error measurement to Structural Similarity"
IEEE Trans. on Image Processing, 13(1), 01/2004
@param refImage: 2D numpy array (reference image)
@param testImage: 2D numpy array (test image)
Both input images should have the same dimensions. This is assumed, and not verified in this function
@return ssim: float-scalar. The mean structural similarity between the 2 input images.
@return ssim_map: the SSIM index map of the test image (this map is smaller than the test image).
"""
def SSIM(refImage, testImage):
M=refImage.shape[0]
N=refImage.shape[1]
winSz=11 #window size for gaussian filter
winSgm = 1.5 # sigma for gaussian filter
#input image should be at least 11x11 in size.
if(M<winSz) or (N<winSz):
ssim_index = -np.inf
ssim_map = -np.inf
return ssim_index, ssim_map
#construct the gaussian filter
gwin = gauss_2d((winSz, winSz), winSgm)
K1 = 0.01 # constants taken from the initial matlab implementation provided by Bovik's lab.
K2 = 0.03
L = 255 #dynamic range.
C1 = (K1*L)*(K1*L)
C2 = (K2*L)*(K2*L)
#ssg is scipy.signal
mu1 = ssg.convolve2d(refImage, gwin, mode='valid')
mu2 = ssg.convolve2d(testImage, gwin, mode='valid')
mu1Sq = mu1*mu1
mu2Sq = mu2*mu2
mu1_mu2 = mu1*mu2
sigma1_sq = ssg.convolve2d((refImage*refImage), gwin, mode='valid') - mu1Sq
sigma2_sq = ssg.convolve2d((testImage*testImage), gwin, mode='valid') - mu1Sq
sigma12 = ssg.convolve2d((refImage*testImage), gwin, mode='valid') - mu1_mu2
assert (C1>0 and C2 > 0), "Conditions for computing ssim with this code are not met. Set the Ks and L to values > 0."
num1 = (2.0*mu1_mu2 + C1) *(2.0*sigma12 + C2)
den1 = (mu1Sq + mu2Sq+C1)*(sigma1_sq + sigma2_sq +C2)
ssim_map = num1/den1
ssim = np.average(ssim_map)
return ssim, ssim_map
"""
VIF: Visual Information Fidelity measure.
Ref: H.R. Sheikh and A.C. Bovik: "Image Information and Visual Quality", IEEE Trans. Image Processing.
Adapted from Galbally's matlab code, which was provided by Bovik et al's LIVE lab.
@param refImage: 2D numpy array (reference image)
@param testImage: 2D numpy array (test image)
Both input images should have the same dimensions. This is assumed, and not verified in this function
@return vifp: float-scalar. Measure of visual information fidelity between the 2 input images
"""
def VIFp(refImage, testImage):
sigma_nsq = 2.0
num=0
den=0
#sc is scale, taking values (1,2,3,4)
for sc in range(1,5):
N=(2**(4-sc+1))+1
win = gauss_2d((N,N), (float(N)/5.0))
#ssg is scipy.signal
if sc > 1 :
refImage = ssg.convolve2d(refImage, win, mode='valid')
testImage = ssg.convolve2d(testImage, win, mode='valid')
refImage = refImage[::2, ::2] #downsample by factor 2 in each direction
testImage = testImage[::2, ::2]
mu1 = ssg.convolve2d(refImage, win, mode='valid')
mu2 = ssg.convolve2d(testImage, win, mode='valid')
mu1Sq = mu1*mu1
mu2Sq = mu2*mu2
mu1_mu2 = mu1*mu2
sigma1_sq = ssg.convolve2d((refImage*refImage), win, mode='valid') - mu1Sq
sigma2_sq = ssg.convolve2d((testImage*testImage), win, mode='valid') - mu2Sq
sigma12 = ssg.convolve2d((refImage*testImage), win, mode='valid') - mu1_mu2
sigma1_sq[sigma1_sq<0]=0 #set negative filter responses to 0.
sigma2_sq[sigma2_sq<0]=0
g = sigma12 / (sigma1_sq + 1e-10)
sv_sq = sigma2_sq - g*sigma12;
g[(sigma1_sq < 1e-10)]=0
sv_sq[sigma1_sq < 1e-10] = sigma2_sq[sigma1_sq < 1e-10]
sigma1_sq[sigma1_sq<1e-10]=0
g[(sigma2_sq < 1e-10)]=0
sv_sq[sigma2_sq < 1e-10] =0
sv_sq[g<0]=sigma2_sq[g<0]
g[g<0]=0
sv_sq[sv_sq <= 1e-10] = 1e-10 #sic. As implemented in the original matlab version...
m1 = g*g*sigma1_sq
m2 = sv_sq+sigma_nsq
m3 = np.log10(1 + m1/m2)
m4 = np.log10(1 + (sigma1_sq/sigma_nsq))
num += np.sum(m3)
den += np.sum(m4)
vifp = num/den
return vifp
"""
HLFI: relative difference between high- and low-frequency energy in image.
Ref: I. Avcibas, N. Memon, B. Sankur: "Steganalysis using image quality metrics", IEEE Trans. Image Processing, 12, 2003.
@param imgFFT: 2D numpy array of complex numbers, representing Fourier transform of test image.
@param ncols: int. Number of columns in image.
@return float-scalar.
"""
def HLFreq_Index(imgFFT, ncols):
N= ncols
colHalf = int(round(N/2)) #round it up
freqSel = 0.15
freqCol = round(freqSel*N)
lowFreqColHalf = int(round(freqCol/2.0))
fftRes = imgFFT
fftMag = np.abs(fftRes)
totalEnergy = np.sum(fftMag)
lowIdx = colHalf-lowFreqColHalf
hiIdx = colHalf + lowFreqColHalf
LowFreqMag = fftMag[:, lowIdx:hiIdx]
lowFreqMagTotal = np.sum(LowFreqMag)
fftMag[:, lowIdx:hiIdx]=0
highFreqMagTotal = np.sum(fftMag)
highLowFreqIQ = np.abs(lowFreqMagTotal - highFreqMagTotal)/float(totalEnergy)
return highLowFreqIQ
"""
Image similarity based on gradient. Computes the mean phase and magnitude difference of gradient between input reference and test images.
Ref: I. Avcibas, N. Memon, B. Sankur: "Steganalysis using image quality metrics", IEEE Trans. Image Processing, 12, 2003.
@param refImage: 2D numpy array (reference image)
@param testImage: 2D numpy array (test image)
Both input images should have the same dimensions. This is assumed, and not verified in this function.
@return difGradMag: float-scalar. Mean difference in gradient-magnitude.
@return difGradPhase: float-scalar. Mean difference in gradient-phase.
"""
def gradientSimilarity(refImage, testImage):
numPx = refImage.shape[0]*refImage.shape[1] # we assume that testImage is of the same shape as refImage
#compute gradient (a la matlab) for reference image
refGrad=np.gradient(refImage,5,5) #5: spacing of 5 pixels between 2 sites of grad. evaluation.
refReal = refGrad[0]
refImag = refGrad[1]
refGradComplex = refReal + 1j*refImag
refMag=np.abs(refGradComplex)
refPhase = np.arctan2(refImag, refReal)
#compute gradient for test image
testGrad=np.gradient(testImage,5) #5: spacing of 5 pixels between 2 sites of grad. evaluation. It applies to both dims.
testReal = testGrad[0]
testImag = testGrad[1]
testGradComplex = testReal + 1j*testImag
testMag=np.abs(testGradComplex)
testPhase = np.arctan2(testImag, testReal)
absPhaseDiff = np.abs(refPhase - testPhase)
difGradPhase = (np.sum(absPhaseDiff))/float(numPx)
absMagDiff = np.abs(refMag - testMag)
difGradMag = float(np.sum(absMagDiff))/float(numPx)
return difGradMag, difGradPhase
"""
find local maxima using 3x3 mask.
Used in cornerSimilarity()
Should produce results very similar to matlabs imregionalmax()
@param img: 2d numpy array. Image-like, containing a 'cornerness'-index for every pixel.
@return regmax: 2d numpy array. Binary image showing corners (which are regions of local maxima in input image).
"""
def regionalmax(img):
h = img.shape[0]
w = img.shape[1]
#extend input image borders by repeating border-values
b = np.zeros((img.shape[0]+2,img.shape[1]+2))
b[1:-1,1:-1] = img
b[0,:]=b[1,:]
b[:,0]=b[:,1]
b[-1,:]=b[-2,:]
b[:,-1]=b[:,-2]
regmax = np.zeros((h,w), dtype='uint8') #will contain the output bitmap showing local maxima.
for i in range(1, h+1):
for j in range(1, w+1):
subim = b[i-1:i+2, j-1:j+2]
lmax = np.amax(subim)
lmin = np.amin(subim)
if b[i,j] == lmax and b[i,j]>lmin :
regmax[i-1,j-1] = 1
for i in range(1,h):
for j in range(w):
if regmax[i,j]==1:
imin=i-1
if imin<0: imin=0
imax=i+2
if imax>h: imax=h
for k in range(imin, imax):
jmin=j-1
if jmin<0: jmin=0
jmax = j+2
if jmax>w: jmax = w
for l in range(jmin, jmax):
if(img[k,l]==img[i,j]):
regmax[k,l]=1
return regmax
"""
returns a 'cornerness' image, where each pixel-value specifies the 'degree of cornerness' of the corresponding pixel in input image
The 'cornerness' image is of size (N-2, M-2) for an input image of size (N,M) (no cornerness computed for the border pixel of input.)
@param image: 2d numpy array. Input image for which cornerness needs to be computed.
@return cornerness: 2d numpy array giving a 'cornerness'-value for the input image.
"""
def cornerMetric(image):
image = image.astype(np.float)
sensitivity_factor = 0.4
gwin = gauss_2d((5,5), 1.5)
vfilt = np.array([-1,0,1], ndmin=2)
hfilt = vfilt.T
A = ssg.convolve2d(image, vfilt, boundary='symm', mode='same')
B = ssg.convolve2d(image, hfilt, boundary='symm', mode='same')
#crop out the valid portions of the filter-response (same size for both A and B)
A = A[1:-2, 1:-2]
B = B[1:-2, 1:-2]
#compute products of A, B, C
C = A*B
A = A*A
B = B*B
#filter A, B, and C
A = ssg.convolve2d(A, gwin, boundary='symm', mode='valid')
B = ssg.convolve2d(B, gwin, boundary='symm', mode='valid')
C = ssg.convolve2d(C, gwin, boundary='symm', mode='valid')
ABsum = A + B
cornerness = (A*B) - (C*C) - sensitivity_factor *(ABsum*ABsum)
return cornerness
'''
compute the corner-based similarity between 2 images (how close are the numbers of corners found in the two images?).
returns an index between 0 and 1. The smaller the better.
@param refImage: 2D numpy array (reference image)
@param testImage: 2D numpy array (test image)
@return float-scalar.
'''
def cornerSimilarity(refImage, testImage):
C = cornerMetric(refImage)
C_peaks = regionalmax(C)
#imshow(C_peaks)
CG = cornerMetric(testImage)
CG_peaks = regionalmax(CG)
nCornersRef = np.sum(C_peaks)
nCornersTest = np.sum(CG_peaks)
#print 'CornerSim::', nCornersRef, nCornersTest
maxCorners = max(nCornersRef, nCornersTest)
qCornersDiff = np.fabs(nCornersRef - nCornersTest)/float(maxCorners)
return qCornersDiff
"""
Similarity between the edge-maps of the two input images.
Ref: I. Avcibas, N. Memon, B. Sankur: "Steganalysis using image quality metrics", IEEE Trans. Image Processing, 12, 2003.
@param refImage: 2D numpy array (reference image)
@param testImage: 2D numpy array (test image)
@return float-scalar
"""
def edgeSimilarity(refImage, testImage):
#bob..sobel returns filter-responses which need to be thresholded to get the edge-map
thinning=1
refImage=refImage.astype(np.float)
#compute edge map for reference image
refSobel_sep = bob.ip.base.sobel(refImage) #returns 3D image. 1st dim is the edge-direction. 1st component is vertical; 2nd component is hor. responses
refSobelX = refSobel_sep[0,:,:]
refSobelY = refSobel_sep[1,:,:]
refEdge = edgeThinning(refSobelX[:,:], refSobelY[:,:], thinning)
#compute edge map for test image
testSobel_sep = bob.ip.base.sobel(testImage)
testSobelX = testSobel_sep[0,:,:]
testSobelY = testSobel_sep[1,:,:]
testEdge = edgeThinning(testSobelX[:,:], testSobelY[:,:], thinning)
numPx = refImage.shape[0]*refImage.shape[1]
numRefEdgePx = np.sum(refEdge)
numTestEdgePx = np.sum(testEdge)
qEdgeD = np.abs(numRefEdgePx - numTestEdgePx)/float(numPx)
return qEdgeD
"""
function to perform edge-thining in the same way as done in Matlab. Called in edgeSimilarity()
Returns a binary edge-map (uint8 image).
@param bx: vertical edge-filter responses (for example, response of 1 of the two Sobel filters)
@param by: horizontal edge-filter responses
@param thinning: [0,1]. Default:1, implies 'do edge-thinning'. If set to 0, no edge-thinning is done.
bx and by should be of the same shape
"""
def edgeThinning(bx, by, thinning=1):
assert(len(bx.shape)==2) and (len(by.shape)==2), "bx and by should be 2D arrays."
assert(bx.shape[0]==by.shape[0]) and (bx.shape[1]==by.shape[1]), "bx and by should have the same shape."
m = bx.shape[0]
n = by.shape[1]
e = np.zeros([m,n], dtype=np.uint8) # will contain the resulting edge-map.
# print 'bx', bx.shape
# print 'by', by.shape
#compute the edge-strength from the 2 directional filter-responses
b = np.sqrt(bx*bx + by*by)
#compute the threshold a la Matlab (as described in "Digital Image Processing" book by W.K. Pratt.
scale=4
cutoff = scale*np.mean(b)
#thresh = np.sqrt(cutoff)
myEps = np.spacing(1)*100.0 #np.spacing(1) is the same as eps in matlab.
#compute the edge-map a la Matlab
for r in range(m):
for c in range(n):
if thinning:
if r<0 or r>(m-1) or (c-1)<0 :
b1=True
else:
b1=(b[r,c-1] < b[r,c])
if(r<0) or r>(m-1) or (c+1)>(n-1) :
b2=True
else:
b2 = (b[r,c] > b[r,c+1])
if (c<0) or c>(n-1) or (r-1)<0 :
b3=True
else:
b3=(b[r,c] > b[r-1,c])
if(c<1) or c>(n-1) or (r+1)>(m-1) :
b4=True
else:
b4=(b[r,c]> b[r+1, c])
c1 = (b[r,c]>cutoff)
c2 = ((bx[r,c]>= (by[r,c]-myEps)) & b1 & b2)
c3 = ((by[r,c]>= (bx[r,c]-myEps)) & b3 & b4)
e[r,c] = c1 & (c2 | c3)
else:
e[r,c] = (b[r,c]>cutoff)
return e
"""
@param refImage: 2D numpy array (reference image)
@param testImage: 2D numpy array (test image)
@return sme: float-scalar. Mean difference in magnitudes of spectra of the two images.
@return spe: float-scalar. Mean difference in phases of spectra of the two images.
"""
#def spectralSimilarity(fftRef, fftTest, numPx):
def spectralSimilarity(refImage, testImage):
#assume that ref and test images have the same shape
rows=refImage.shape[0]
cols=refImage.shape[1]
numPx = rows*cols
fftRef = np.fft.rfft2(refImage)
fftTest = np.fft.rfft2(testImage)
refMag=np.abs(fftRef)
testMag=np.abs(fftTest)
absMagDiff = np.abs(refMag - testMag)
#SME: spectral magnitude error
sme = np.sum(absMagDiff * absMagDiff)/float(numPx)
#SPE: spectral phase error
refPhase = np.angle(fftRef)
testPhase = np.angle(fftTest)
absPhaseDiff = np.abs(refPhase - testPhase)
spe = np.sum(absPhaseDiff * absPhaseDiff)/float(numPx)
return sme, spe
"""
Cosine-Similarity between the the rows of the two input images.
Ref: I. Avcibas, N. Memon, B. Sankur: "Steganalysis using image quality metrics", IEEE Trans. Image Processing, 12, 2003.
@param refImage: 2D numpy array (reference image)
@param testImage: 2D numpy array (test image)
@param diffImage: 2D numpy array. Difference between refImage and testImage. Not strictly necessary as input but precomputed here, to save computation time.
@return mas: float-scalar. Mean angle-similarity.
@return mams: float-scalar. Mean angle-magnitude similarity.
"""
def angleSimilarity(refImage, testImage, diffImage):
mas=None
mams=None
numPx = refImage.shape[0]*refImage.shape[1]
refNorm = np.linalg.norm(refImage, axis=1)
testNorm = np.linalg.norm(testImage, axis=1)
thetaVec = np.zeros([refImage.shape[0], 1])
diffNorm = np.linalg.norm(diffImage, axis=1)
magnitVec = diffNorm/255.0 #Galbally divides by sqrt(255**2)
magnitVec = np.reshape(magnitVec, (refImage.shape[0], 1))
for i in range(refImage.shape[0]):
refR = refImage[i,:]
testR = testImage[i,:]
cosTheta = np.dot(refR, testR)/(refNorm[i]*testNorm[i])
if(cosTheta < -1.0): cosTheta = -1.0
if(cosTheta > 1.0): cosTheta = 1.0
theta = np.arccos(cosTheta)
thetaVec[i]=theta
tmp2 = thetaVec*2.0/np.pi
#MAS: mean angle similarity
mas = 1.0 -( sum(tmp2) / float(numPx) )
tmp3 = 1.0 - tmp2
tmp4 = 1.0 - magnitVec
chi = 1.0 - (tmp3 * tmp4)
#MAMS: mean angle-magnitude similarity
mams = sum(chi)/float(numPx)
return (float(mas), float(mams))
'''
Returns a 2D gaussian-filter matrix
equivalent of matlab fspecial('gaussian'...)
@param shape: tuple defining the size of the desired filter in each dimension. Elements of tuple should be 2 positive odd-integers.
@param sigma: float-scalar
@return h: 2D numpy array. Contains weights for 2D gaussian filter.
'''
def gauss_2d(shape=(3, 3), sigma=0.5):
"""
2D gaussian mask - should give the same result as MATLAB's
fspecial('gaussian',[shape],[sigma])
"""
m, n = [(ss-1.)/2. for ss in shape]
y, x = np.ogrid[-m:m+1, -n:n+1]
h = np.exp(-(x*x + y*y) / (2.*sigma*sigma))
h[h < np.finfo(h.dtype).eps*h.max()] = 0
sumh = h.sum()
if sumh != 0:
h /= sumh
return h
'''
Matlab-like RGB to gray...
@param: rgbImage : numpy array for the form: [3,h,w] where h is the height of the image and w is the width of the image.
Returns a y-image in floating-point format (range [(16/255) .. (235/255)])
'''
def matlab_rgb2gray(rgbImage):
#g1 = 0.299*rgbFrame[0,:,:] + 0.587*rgbFrame[1,:,:] + 0.114*rgbFrame[2,:,:] #standard coeffs in CCIR601
#this is how it's done in matlab...
rgbImage = rgbImage / 255.0
C0 = 65.481/255.0
C1 = 128.553/255.0
C2 = 24.966/255.0
scaleMin = 16.0/255.0
gray = scaleMin + (C0*rgbImage[0,:,:] + C1*rgbImage[1,:,:] + C2*rgbImage[2,:,:])
return gray
'''
computes image-quality features for a set of frames comprising a video.
@param video4d: a '4d' video (N frames, each frame representing an r-g-b image).
returns a set of feature-vectors, 1 vector per frame of video4d
'''
def computeVideoIQM(video4d):
numframes = video4d.shape[0]
gwin = gauss_2d((3,3), 0.5)
#process first frame separately, to get the no. of iqm features
f=0
rgbFrame = video4d[f,:,:,:]
grayFrame = matlab_rgb2gray(rgbFrame) #compute gray-level image for input color-frame
iqmSet = computeQualityFeatures(grayFrame, gwin)
numIQMs = len(iqmSet)
#now initialize fset to store iqm features for all frames of input video.
fset = np.zeros([numframes, numIQMs])
bobQFeats = np.asarray(iqmSet) # computeQualityFeatures() returns a tuple
fset[f,:] = bobQFeats
for f in range(1,numframes):
rgbFrame = video4d[f,:,:,:]
grayFrame = matlab_rgb2gray(rgbFrame) #compute gray-level image for input color-frame
bobQFeats = np.asarray(computeQualityFeatures(grayFrame, gwin)) # computeQualityFeatures() returns a tuple
fset[f,:] = bobQFeats
return fset
class Algorithm:
def __init__(self):
pass
def process(self, inputs, outputs):
video = inputs["video"].data.value
iqmFeats = computeVideoIQM(video)
outputs["iqm_feature_set"].write({
'value': iqmFeats
})
return True
The code for this algorithm in Python
The ruler at 80 columns indicate suggested POSIX line breaks (for readability).
The editor will automatically enlarge to accomodate the entirety of your input
Use keyboard shortcuts for search/replace and faster editing. For example, use Ctrl-F (PC) or Cmd-F (Mac) to search through this box
Given an input video consisting of N frames, this algorithm returns a Nxd floating-point array containing one d-dimensional feature-vector for each frame. The feature vector consists of various image-quality measures computed for the frame.
This algorithm relies on the Bob library.
Updated | Name | Databases/Protocols | Analyzers | |||
---|---|---|---|---|---|---|
sbhatta/sbhatta/iqm-face-antispoofing-test/2/replay2-antispoofing-iqm-lda | replay/2@grandtest | sbhatta/iqm_spoof_eer_analyzer/9 |
This table shows the number of times this algorithm has been successfully run using the given environment. Note this does not provide sufficient information to evaluate if the algorithm will run when submitted to different conditions.