This algorithm is a legacy one. The API has changed since its implementation. New versions and forks will need to be updated.
This algorithm is an analyzer. It can only be used on analysis blocks.

Algorithms have at least one input and one output. All algorithm endpoints are organized in groups. Groups are used by the platform to indicate which inputs and outputs are synchronized together. The first group is automatically synchronized with the channel defined by the block in which the algorithm is deployed.

Group: main

Endpoint Name Data Format Nature
template_id system/array_1d_text/1 Input
client_id system/text/1 Input
scores elie_khoury/string_probe_scores/1 Input

Analyzers may produce any number of results. Once experiments using this analyzer are done, you may display the results or filter experiments using criteria based on them.

Name Type
client_id1 string
template_id string
mean_eer float32
std float32
xxxxxxxxxx
51
 
1
import bob
2
import numpy
3
4
class Algorithm:
5
    def __init__(self):       
6
        self.mean_eer = []  
7
        self.mi_user= []    
8
        self.positives = [None] * 63
9
        self.negatives = [None] * 63        
10
        self.flag=0
11
        
12
    def process(self, inputs, output):
13
        # initialize the score vector
14
        if self.flag==0:
15
            self.flag=1
16
            for i in range(63):
17
                self.positives[i] = []
18
                self.negatives[i] = [] 
19
        # read the input data   
20
        data = inputs['scores'].data 
21
        client_id = inputs['client_id'].data.text
22
        user1 = inputs['template_id'].data.text
23
             
24
         
25
        user=inputs["client_id"].data.text        
26
        if user[0]=="G":            
27
            self.mi_user=numpy.int32(user[8:len(user)])           
28
        if user[0]=="I":            
29
            self.mi_user=numpy.int32(user[9:len(user)])    
30
        
31
        self.positives[self.mi_user-1].extend([k.score for k in data.scores if k.template_identity == data.client_identity])        
32
        self.negatives[self.mi_user-1].extend([k.score for k in data.scores if k.template_identity != data.client_identity])  
33
        
34
        if not(inputs.hasMoreData()):
35
            for iuser in range(63):
36
                positive_scores=self.positives[iuser]
37
                negative_scores=self.negatives[iuser]
38
                eer_threshold = bob.measure.eer_threshold(negative_scores, positive_scores)
39
                far, frr      = bob.measure.farfrr(negative_scores, positive_scores, eer_threshold)                
40
                self.mean_eer.append(numpy.float32((far+frr) / 2.))
41
            
42
            # writes the output back to the platform
43
            
44
            output.write({
45
                'mean_eer': numpy.float32(numpy.average(self.mean_eer)), #average of all 63 EER
46
                'std': numpy.float32(numpy.std(self.mean_eer)), 
47
                'client_id1': user,  
48
                'template_id': user1,    
49
            })
50
            
51
        return True

The code for this algorithm in Python
The ruler at 80 columns indicate suggested POSIX line breaks (for readability).
The editor will automatically enlarge to accomodate the entirety of your input
Use keyboard shortcuts for search/replace and faster editing. For example, use Ctrl-F (PC) or Cmd-F (Mac) to search through this box

Could not find any documentation for this object.

Experiments

Updated Name Databases/Protocols Analyzers
robertodaza/aythamimm/atvs_keystroke_btas_benchmark/1/proof5 atvskeystroke/1@A robertodaza/proof0/3
robertodaza/aythamimm/atvs_keystroke_btas_benchmark/1/proof4 atvskeystroke/1@A robertodaza/proof0/3
Created with Raphaël 2.1.2[compare]aythamimm/analyzer_keystroke/70aythamimm/keystroke_btas15_analyzer/1robertodaza/proof0/1Julrobertodaza/proof1-template_id/12015Dec29robertodaza/proof2-client_id-template/1robertodaza/proof0/2robertodaza/proof0/317robertodaza/proof0/4robertodaza/proof1-template_id/1019robertodaza/analyzerahora/1212016Jan25

This table shows the number of times this algorithm has been successfully run using the given environment. Note this does not provide sufficient information to evaluate if the algorithm will run when submitted to different conditions.

Terms of Service | Contact Information | BEAT platform version 2.2.1b0 | © Idiap Research Institute - 2013-2025