Bob 2.0 implementation of feature projection on a linear machine
Algorithms have at least one input and one output. All algorithm endpoints are organized in groups. Groups are used by the platform to indicate which inputs and outputs are synchronized together. The first group is automatically synchronized with the channel defined by the block in which the algorithm is deployed.
Endpoint Name | Data Format | Nature |
---|---|---|
features | system/array_1d_floats/1 | Input |
scores | system/float/1 | Output |
Endpoint Name | Data Format | Nature |
---|---|---|
classifier | tutorial/linear_machine/1 | Input |
xxxxxxxxxx
import bob.learn.linear
import numpy
def linear_machine_from_data(data):
"""Unmangles a bob.machine.LinearMachine from a BEAT Data object"""
machine = bob.learn.linear.Machine(data.weights)
machine.biases = data.biases
machine.input_subtract = data.input_subtract
machine.input_divide = data.input_divide
return machine
class Algorithm:
def __init__(self):
self.machine = None
def process(self, inputs, outputs):
# retrieve the linear machine once
if self.machine is None:
inputs['classifier'].next()
self.machine = linear_machine_from_data(inputs['classifier'].data)
# collect all the image projections for the current template
feature = inputs['features'].data.value.astype('float64')
projection = self.machine(feature)
# output the projection score
outputs['scores'].write({
'value': projection
})
return True
The code for this algorithm in Python
The ruler at 80 columns indicate suggested POSIX line breaks (for readability).
The editor will automatically enlarge to accomodate the entirety of your input
Use keyboard shortcuts for search/replace and faster editing. For example, use Ctrl-F (PC) or Cmd-F (Mac) to search through this box
Project input features on a given linear machine (e.g., logistic regression)
Updated | Name | Databases/Protocols | Analyzers | |||
---|---|---|---|---|---|---|
pkorshunov/pkorshunov/isv-asv-pad-fusion-complete/1/asv_isv-pad_lbp_hist_ratios_lr-fusion_lr-pa_aligned | avspoof/2@physicalaccess_verification,avspoof/2@physicalaccess_verify_train,avspoof/2@physicalaccess_verify_train_spoof,avspoof/2@physicalaccess_antispoofing,avspoof/2@physicalaccess_verification_spoof | pkorshunov/spoof-score-fusion-roc_hist/1 | ||||
pkorshunov/pkorshunov/speech-pad-simple/1/speech-pad_lbp_hist_ratios_lr-pa_aligned | avspoof/2@physicalaccess_antispoofing | pkorshunov/simple_antispoofing_analyzer/4 | ||||
pkorshunov/pkorshunov/speech-antispoofing-baseline/1/btas2016-baseline-pa | avspoof/1@physicalaccess_antispoofing | pkorshunov/simple_antispoofing_analyzer/2 |
This table shows the number of times this algorithm has been successfully run using the given environment. Note this does not provide sufficient information to evaluate if the algorithm will run when submitted to different conditions.