Bob 2.0 implementation of feature projection on a linear machine

This algorithm is a legacy one. The API has changed since its implementation. New versions and forks will need to be updated.
This algorithm is splittable

Algorithms have at least one input and one output. All algorithm endpoints are organized in groups. Groups are used by the platform to indicate which inputs and outputs are synchronized together. The first group is automatically synchronized with the channel defined by the block in which the algorithm is deployed.

Group: main

Endpoint Name Data Format Nature
features system/array_1d_floats/1 Input
scores system/float/1 Output

Unnamed group

Endpoint Name Data Format Nature
classifier tutorial/linear_machine/1 Input
xxxxxxxxxx
37
 
1
import bob.learn.linear
2
import numpy
3
4
def linear_machine_from_data(data):
5
    """Unmangles a bob.machine.LinearMachine from a BEAT Data object"""
6
7
    machine = bob.learn.linear.Machine(data.weights)
8
    machine.biases = data.biases
9
    machine.input_subtract = data.input_subtract
10
    machine.input_divide = data.input_divide
11
    return machine
12
13
class Algorithm:
14
15
    def __init__(self):
16
        self.machine            = None
17
18
19
    def process(self, inputs, outputs):
20
21
        # retrieve the linear machine once
22
        if self.machine is None:
23
            inputs['classifier'].next()
24
            self.machine = linear_machine_from_data(inputs['classifier'].data)
25
26
27
        # collect all the image projections for the current template
28
        feature = inputs['features'].data.value.astype('float64')
29
        projection = self.machine(feature)
30
31
        # output the projection score
32
        outputs['scores'].write({
33
            'value': projection
34
            })
35
36
        return True
37

The code for this algorithm in Python
The ruler at 80 columns indicate suggested POSIX line breaks (for readability).
The editor will automatically enlarge to accomodate the entirety of your input
Use keyboard shortcuts for search/replace and faster editing. For example, use Ctrl-F (PC) or Cmd-F (Mac) to search through this box

Project input features on a given linear machine (e.g., logistic regression)

Experiments

Updated Name Databases/Protocols Analyzers
pkorshunov/pkorshunov/isv-asv-pad-fusion-complete/1/asv_isv-pad_lbp_hist_ratios_lr-fusion_lr-pa_aligned avspoof/2@physicalaccess_verification,avspoof/2@physicalaccess_verify_train,avspoof/2@physicalaccess_verify_train_spoof,avspoof/2@physicalaccess_antispoofing,avspoof/2@physicalaccess_verification_spoof pkorshunov/spoof-score-fusion-roc_hist/1
pkorshunov/pkorshunov/speech-pad-simple/1/speech-pad_lbp_hist_ratios_lr-pa_aligned avspoof/2@physicalaccess_antispoofing pkorshunov/simple_antispoofing_analyzer/4
pkorshunov/pkorshunov/speech-antispoofing-baseline/1/btas2016-baseline-pa avspoof/1@physicalaccess_antispoofing pkorshunov/simple_antispoofing_analyzer/2
Created with Raphaël 2.1.2[compare]pkorshunov/simple_linear_projection/1pkorshunov/simple_linear_projection_train/1Mar82016Apr6

This table shows the number of times this algorithm has been successfully run using the given environment. Note this does not provide sufficient information to evaluate if the algorithm will run when submitted to different conditions.

Terms of Service | Contact Information | BEAT platform version 2.2.1b0 | © Idiap Research Institute - 2013-2025