Bob 2.0-based training of the binary Logistic Regression model

This algorithm is a legacy one. The API has changed since its implementation. New versions and forks will need to be updated.

Algorithms have at least one input and one output. All algorithm endpoints are organized in groups. Groups are used by the platform to indicate which inputs and outputs are synchronized together. The first group is automatically synchronized with the channel defined by the block in which the algorithm is deployed.

Group: asv_real

Endpoint Name Data Format Nature
asv_real_scores elie_khoury/string_probe_scores/1 Input
asv_probe_id system/text/1 Input
classifier tutorial/linear_machine/1 Output

Group: pad

Endpoint Name Data Format Nature
pad_scores_class system/text/1 Input
pad_file_id system/text/1 Input
pad_scores system/float/1 Input

Group: asv_attack

Endpoint Name Data Format Nature
asv_attack_scores elie_khoury/string_probe_scores/1 Input
asv_attack_id system/text/1 Input
xxxxxxxxxx
112
 
1
import bob
2
import bob.learn.linear
3
import numpy
4
import math
5
6
7
def zeromean_unitvar_norm(data, mean, std):
8
    """ Normalize the data with zero mean and unit variance. Mean and variance are in numpy.ndarray format"""
9
    return numpy.divide(data-mean,std)
10
11
12
class Algorithm:
13
14
    def __init__(self):
15
        self.all_pad_scores = []  # scores from pad
16
        self.all_asv_scores = []  # scores form asv
17
        self.train_real = []
18
        self.train_zimp = []
19
        self.train_attack = None
20
        self.pad_real_id_matched = None
21
        self.pad_attack_id_matched = None
22
23
    def process(self, inputs, outputs):
24
25
        if self.pad_real_id_matched is None and self.pad_attack_id_matched is None:
26
            self.pad_real_id_matched = {}
27
            self.pad_attack_id_matched = {}
28
            # accumulates the scores from PAD
29
            while inputs['pad_scores'].hasMoreData():
30
                inputs['pad_scores'].next()
31
                inputs['pad_scores_class'].next()
32
                inputs['pad_file_id'].next()
33
                score_pad = inputs['pad_scores'].data.value
34
                label_pad = inputs['pad_scores_class'].data.text
35
                file_id = inputs['pad_file_id'].data.text
36
                if label_pad == 'real':
37
                    self.pad_real_id_matched[file_id] = score_pad  # add real score matching file id
38
                else:
39
                    self.pad_attack_id_matched[file_id] = score_pad  # add attack score matching file id
40
                self.all_pad_scores.append(score_pad)  # add score to the array with all
41
42
        if self.train_attack is None:
43
            self.train_attack = []
44
            while inputs['asv_attack_id'].hasMoreData():
45
                inputs['asv_attack_id'].next()
46
                inputs['asv_attack_scores'].next()
47
                asv_attack_id = inputs['asv_attack_id'].data.text
48
                asv_attack_scores = inputs['asv_attack_scores'].data
49
                corresponding_pad_attack_score = self.pad_attack_id_matched[asv_attack_id]
50
                for score in asv_attack_scores.scores:
51
                    if score.template_identity == asv_attack_scores.client_identity:
52
                        self.train_attack.append((score.score, corresponding_pad_attack_score))
53
                        self.all_asv_scores.append(score.score)
54
55
        # accumulate the scores from ASV
56
        asv_probe_id = inputs['asv_probe_id'].data.text
57
        print ("asv_probe_id: %s" % asv_probe_id)
58
        corresponding_pad_real_score = self.pad_real_id_matched[asv_probe_id]
59
        data_asv = inputs['asv_real_scores'].data
60
        for score in data_asv.scores:
61
            # if this is real score
62
            if score.template_identity == data_asv.client_identity:
63
                self.train_real.append((score.score, corresponding_pad_real_score))
64
            # if this is zero-impostor score
65
            else:
66
                self.train_zimp.append((score.score, corresponding_pad_real_score))
67
            self.all_asv_scores.append(score.score)
68
69
70
        if not(inputs.hasMoreData()):
71
            self.all_pad_scores = numpy.asarray(self.all_pad_scores, dtype=numpy.float64)
72
            self.all_asv_scores = numpy.asarray(self.all_asv_scores, dtype=numpy.float64)
73
74
            # compute a combined (asv,pad) mean and std
75
            pad_mean =  numpy.average(self.all_pad_scores, axis=0)
76
            pad_std  = numpy.std(self.all_pad_scores, axis=0)
77
            asv_mean =  numpy.average(self.all_asv_scores, axis=0)
78
            asv_std  = numpy.std(self.all_asv_scores, axis=0)
79
80
            scores_mean = numpy.asarray([asv_mean, pad_mean], dtype=numpy.float64)
81
            print ("scores_mean ", scores_mean)
82
            scores_std = numpy.asarray([asv_std, pad_std], dtype=numpy.float64)
83
            print ("scores_std ", scores_std)
84
85
            # put together and normalize real scores from pad and asv
86
            self.train_real = zeromean_unitvar_norm(self.train_real, scores_mean, scores_std)
87
            # put together and normalize zimp scores from pad and asv
88
            self.train_zimp = zeromean_unitvar_norm(self.train_zimp, scores_mean, scores_std)
89
            # put together and normalize attack scores from pad and asv
90
            self.train_attack = zeromean_unitvar_norm(self.train_attack, scores_mean, scores_std)
91
92
            print("self.train_real len: %d, self.train_zimp len: %d, self.train_attack len: %d" %(len(self.train_real), len(self.train_zimp), len(self.train_attack)))
93
            
94
            # trains the Logistic Regression classifier
95
            positives = self.train_real
96
            negatives = numpy.concatenate((self.train_zimp, self.train_attack), axis=0)
97
98
            trainer = bob.learn.linear.CGLogRegTrainer()
99
            machine = trainer.train(negatives, positives)
100
            if scores_mean is not None and scores_std is not None:
101
                machine.input_subtract = scores_mean
102
                machine.input_divide = scores_std
103
104
            # outputs data
105
            outputs["classifier"].write({
106
                'input_subtract': machine.input_subtract,
107
                'input_divide':   machine.input_divide,
108
                'weights':        machine.weights,
109
                'biases':         machine.biases,
110
            })
111
112
        return True

The code for this algorithm in Python
The ruler at 80 columns indicate suggested POSIX line breaks (for readability).
The editor will automatically enlarge to accomodate the entirety of your input
Use keyboard shortcuts for search/replace and faster editing. For example, use Ctrl-F (PC) or Cmd-F (Mac) to search through this box

This algorithm will run a Logistic Regression model [LR] for a binary classification problem using features as inputs.

The inputs take feature vectors as input and a text flag indicating if the data is a hit (it should be 'real') or a miss.

[LR]https://en.wikipedia.org/wiki/Logistic_regression

Experiments

Updated Name Databases/Protocols Analyzers
pkorshunov/pkorshunov/isv-asv-pad-fusion-complete/1/asv_isv-pad_gmm-fusion_lr-pa avspoof/2@physicalaccess_verification,avspoof/2@physicalaccess_verify_train,avspoof/2@physicalaccess_verify_train_spoof,avspoof/2@physicalaccess_antispoofing,avspoof/2@physicalaccess_verification_spoof pkorshunov/spoof-score-fusion-roc_hist/1
Created with Raphaël 2.1.2[compare]pkorshunov/lr-spoofing-score-fusion-train/1pkorshunov/lr-spoofing-score-fusion-train/22016Apr6

This table shows the number of times this algorithm has been successfully run using the given environment. Note this does not provide sufficient information to evaluate if the algorithm will run when submitted to different conditions.

Terms of Service | Contact Information | BEAT platform version 2.2.1b0 | © Idiap Research Institute - 2013-2025