Bob 2.0 implementation of feature projection on a linear machine
Algorithms have at least one input and one output. All algorithm endpoints are organized in groups. Groups are used by the platform to indicate which inputs and outputs are synchronized together. The first group is automatically synchronized with the channel defined by the block in which the algorithm is deployed.
Endpoint Name | Data Format | Nature |
---|---|---|
asv_real_scores | elie_khoury/string_probe_scores/1 | Input |
asv_probe_id | system/text/1 | Input |
fused_scores | pkorshunov/fusion_scores/1 | Output |
Endpoint Name | Data Format | Nature |
---|---|---|
pad_scores_class | system/text/1 | Input |
pad_file_id | system/text/1 | Input |
pad_scores | system/float/1 | Input |
Endpoint Name | Data Format | Nature |
---|---|---|
asv_attack_scores | elie_khoury/string_probe_scores/1 | Input |
asv_attack_id | system/text/1 | Input |
Endpoint Name | Data Format | Nature |
---|---|---|
classifier | tutorial/linear_machine/1 | Input |
xxxxxxxxxx
import bob.learn.linear
import numpy
def linear_machine_from_data(data):
"""Extracts a bob.learn.linear.Machine from a BEAT Data object"""
machine = bob.learn.linear.Machine(data.weights)
machine.biases = data.biases
machine.input_subtract = data.input_subtract
machine.input_divide = data.input_divide
return machine
class Algorithm:
def __init__(self):
self.machine = None
self.toevaluate_real= []
self.toevaluate_zimp = []
self.toevaluate_attack = None
self.pad_real_id_matched = None
self.pad_attack_id_matched = None
def process(self, inputs, outputs):
# retrieve the linear machine once
if self.machine is None:
inputs['classifier'].next()
self.machine = linear_machine_from_data(inputs['classifier'].data)
# accumulates the scores from PAD
if self.pad_real_id_matched is None and self.pad_attack_id_matched is None:
self.pad_real_id_matched = {}
self.pad_attack_id_matched = {}
while inputs['pad_scores'].hasMoreData():
inputs['pad_scores'].next()
inputs['pad_scores_class'].next()
inputs['pad_file_id'].next()
score_pad = inputs['pad_scores'].data.value
label_pad = inputs['pad_scores_class'].data.text
file_id = inputs['pad_file_id'].data.text
if label_pad == 'real':
self.pad_real_id_matched[file_id] = score_pad # add real score matching file id
else:
self.pad_attack_id_matched[file_id] = score_pad # add attack score matching file id
if self.toevaluate_attack is None:
self.toevaluate_attack = []
while inputs['asv_attack_id'].hasMoreData():
inputs['asv_attack_id'].next()
inputs['asv_attack_scores'].next()
asv_attack_id = inputs['asv_attack_id'].data.text
asv_attack_scores = inputs['asv_attack_scores'].data
corresponding_pad_attack_score = self.pad_attack_id_matched[asv_attack_id]
for score in asv_attack_scores.scores:
if score.template_identity == asv_attack_scores.client_identity:
self.toevaluate_attack.append((score.score, corresponding_pad_attack_score))
# get correct scores from ASV real
asv_probe_id = inputs['asv_probe_id'].data.text
corresponding_pad_real_score = self.pad_real_id_matched[asv_probe_id]
# corresponding_pad_real_score = 0.1
asv_real_scores = inputs['asv_real_scores'].data
for score in asv_real_scores.scores:
# if this is real score
if score.template_identity == asv_real_scores.client_identity:
self.toevaluate_real.append((score.score, corresponding_pad_real_score))
# if this is zero-impostor score
else:
self.toevaluate_zimp.append((score.score, corresponding_pad_real_score))
if not(inputs.hasMoreData()):
real_scores = []
for score_pair in self.toevaluate_real:
real_scores.extend(self.machine(score_pair))
zimp_scores = []
for score_pair in self.toevaluate_zimp:
zimp_scores.extend(self.machine(score_pair))
attack_scores = []
for score_pair in self.toevaluate_attack:
attack_scores.extend(self.machine(score_pair))
# output the projected scores
outputs['fused_scores'].write({
'real_scores': real_scores,
'zimp_scores': zimp_scores,
'attack_scores': attack_scores
})
return True
The code for this algorithm in Python
The ruler at 80 columns indicate suggested POSIX line breaks (for readability).
The editor will automatically enlarge to accomodate the entirety of your input
Use keyboard shortcuts for search/replace and faster editing. For example, use Ctrl-F (PC) or Cmd-F (Mac) to search through this box
Project input features on a given linear machine (e.g., logistic regression)
Updated | Name | Databases/Protocols | Analyzers | |||
---|---|---|---|---|---|---|
pkorshunov/pkorshunov/isv-asv-pad-fusion-complete/1/asv_isv-pad_lbp_hist_ratios_lr-fusion_lr-pa_aligned | avspoof/2@physicalaccess_verification,avspoof/2@physicalaccess_verify_train,avspoof/2@physicalaccess_verify_train_spoof,avspoof/2@physicalaccess_antispoofing,avspoof/2@physicalaccess_verification_spoof | pkorshunov/spoof-score-fusion-roc_hist/1 | ||||
pkorshunov/pkorshunov/isv-asv-pad-fusion-complete/1/asv_isv-pad_gmm-fusion_lr-pa | avspoof/2@physicalaccess_verification,avspoof/2@physicalaccess_verify_train,avspoof/2@physicalaccess_verify_train_spoof,avspoof/2@physicalaccess_antispoofing,avspoof/2@physicalaccess_verification_spoof | pkorshunov/spoof-score-fusion-roc_hist/1 |
This table shows the number of times this algorithm has been successfully run using the given environment. Note this does not provide sufficient information to evaluate if the algorithm will run when submitted to different conditions.