Bob 2.0 implementation of feature projection on a linear machine

This algorithm is a legacy one. The API has changed since its implementation. New versions and forks will need to be updated.
This algorithm is splittable

Algorithms have at least one input and one output. All algorithm endpoints are organized in groups. Groups are used by the platform to indicate which inputs and outputs are synchronized together. The first group is automatically synchronized with the channel defined by the block in which the algorithm is deployed.

Group: asv_real

Endpoint Name Data Format Nature
asv_real_scores elie_khoury/string_probe_scores/1 Input
asv_probe_id system/text/1 Input
fused_scores pkorshunov/fusion_scores/1 Output

Group: pad

Endpoint Name Data Format Nature
pad_scores_class system/text/1 Input
pad_file_id system/text/1 Input
pad_scores system/float/1 Input

Group: asv_attack

Endpoint Name Data Format Nature
asv_attack_scores elie_khoury/string_probe_scores/1 Input
asv_attack_id system/text/1 Input

Unnamed group

Endpoint Name Data Format Nature
classifier tutorial/linear_machine/1 Input
xxxxxxxxxx
91
 
1
import bob.learn.linear
2
import numpy
3
4
def linear_machine_from_data(data):
5
    """Extracts a bob.learn.linear.Machine from a BEAT Data object"""
6
7
    machine = bob.learn.linear.Machine(data.weights)
8
    machine.biases = data.biases
9
    machine.input_subtract = data.input_subtract
10
    machine.input_divide = data.input_divide
11
    return machine
12
13
class Algorithm:
14
15
    def __init__(self):
16
        self.machine            = None
17
        self.toevaluate_real= []
18
        self.toevaluate_zimp = []
19
        self.toevaluate_attack = None
20
        self.pad_real_id_matched = None
21
        self.pad_attack_id_matched = None
22
23
    def process(self, inputs, outputs):
24
25
        # retrieve the linear machine once
26
        if self.machine is None:
27
            inputs['classifier'].next()
28
            self.machine = linear_machine_from_data(inputs['classifier'].data)
29
30
        # accumulates the scores from PAD
31
        if self.pad_real_id_matched is None and self.pad_attack_id_matched is None:
32
            self.pad_real_id_matched = {}
33
            self.pad_attack_id_matched = {}
34
            while inputs['pad_scores'].hasMoreData():
35
                inputs['pad_scores'].next()
36
                inputs['pad_scores_class'].next()
37
                inputs['pad_file_id'].next()
38
                score_pad = inputs['pad_scores'].data.value
39
                label_pad = inputs['pad_scores_class'].data.text
40
                file_id = inputs['pad_file_id'].data.text
41
                if label_pad == 'real':
42
                    self.pad_real_id_matched[file_id] = score_pad  # add real score matching file id
43
                else:
44
                    self.pad_attack_id_matched[file_id] = score_pad  # add attack score matching file id
45
                
46
        if self.toevaluate_attack is None:
47
            self.toevaluate_attack = []
48
            while inputs['asv_attack_id'].hasMoreData():
49
                inputs['asv_attack_id'].next()
50
                inputs['asv_attack_scores'].next()
51
                asv_attack_id = inputs['asv_attack_id'].data.text
52
                asv_attack_scores = inputs['asv_attack_scores'].data
53
                corresponding_pad_attack_score = self.pad_attack_id_matched[asv_attack_id]
54
                for score in asv_attack_scores.scores:
55
                    if score.template_identity == asv_attack_scores.client_identity:
56
                        self.toevaluate_attack.append((score.score, corresponding_pad_attack_score))
57
                    
58
        # get correct scores from ASV real
59
        asv_probe_id = inputs['asv_probe_id'].data.text
60
        corresponding_pad_real_score = self.pad_real_id_matched[asv_probe_id]
61
#        corresponding_pad_real_score = 0.1
62
        asv_real_scores = inputs['asv_real_scores'].data
63
        for score in asv_real_scores.scores:
64
            # if this is real score
65
            if score.template_identity == asv_real_scores.client_identity:
66
                self.toevaluate_real.append((score.score, corresponding_pad_real_score))
67
            # if this is zero-impostor score
68
            else: 
69
                self.toevaluate_zimp.append((score.score, corresponding_pad_real_score))
70
71
        if not(inputs.hasMoreData()):
72
            
73
            real_scores = []
74
            for score_pair in self.toevaluate_real:
75
                real_scores.extend(self.machine(score_pair))
76
            zimp_scores = []
77
            for score_pair in self.toevaluate_zimp:
78
                zimp_scores.extend(self.machine(score_pair))
79
            attack_scores = []
80
            for score_pair in self.toevaluate_attack:
81
                attack_scores.extend(self.machine(score_pair))
82
                
83
            # output the projected scores
84
            outputs['fused_scores'].write({
85
                    'real_scores': real_scores,
86
                    'zimp_scores': zimp_scores,
87
                    'attack_scores': attack_scores
88
                })
89
90
        return True
91

The code for this algorithm in Python
The ruler at 80 columns indicate suggested POSIX line breaks (for readability).
The editor will automatically enlarge to accomodate the entirety of your input
Use keyboard shortcuts for search/replace and faster editing. For example, use Ctrl-F (PC) or Cmd-F (Mac) to search through this box

Project input features on a given linear machine (e.g., logistic regression)

Experiments

Updated Name Databases/Protocols Analyzers
pkorshunov/pkorshunov/isv-asv-pad-fusion-complete/1/asv_isv-pad_lbp_hist_ratios_lr-fusion_lr-pa_aligned avspoof/2@physicalaccess_verification,avspoof/2@physicalaccess_verify_train,avspoof/2@physicalaccess_verify_train_spoof,avspoof/2@physicalaccess_antispoofing,avspoof/2@physicalaccess_verification_spoof pkorshunov/spoof-score-fusion-roc_hist/1
pkorshunov/pkorshunov/isv-asv-pad-fusion-complete/1/asv_isv-pad_gmm-fusion_lr-pa avspoof/2@physicalaccess_verification,avspoof/2@physicalaccess_verify_train,avspoof/2@physicalaccess_verify_train_spoof,avspoof/2@physicalaccess_antispoofing,avspoof/2@physicalaccess_verification_spoof pkorshunov/spoof-score-fusion-roc_hist/1
Created with Raphaël 2.1.2[compare]pkorshunov/lr-score-fusion-project/12016Apr6

This table shows the number of times this algorithm has been successfully run using the given environment. Note this does not provide sufficient information to evaluate if the algorithm will run when submitted to different conditions.

Terms of Service | Contact Information | BEAT platform version 2.2.1b0 | © Idiap Research Institute - 2013-2025