Bob 2.0 implementation of ISV training (U and D subspaces)

This algorithm is a legacy one. The API has changed since its implementation. New versions and forks will need to be updated.

Algorithms have at least one input and one output. All algorithm endpoints are organized in groups. Groups are used by the platform to indicate which inputs and outputs are synchronized together. The first group is automatically synchronized with the channel defined by the block in which the algorithm is deployed.

Group: main

Endpoint Name Data Format Nature
ubm tutorial/gmm/1 Input
statistics tutorial/gmm_statistics/1 Input
client_id system/text/1 Input
isvbase tpereira/isvbase/1 Output

Parameters allow users to change the configuration of an algorithm when scheduling an experiment

Name Description Type Default Range/Choices
isv-training-iterations uint32 10
init-seed uint32 0
subspace-dimension-of-u uint32 50
relevance-factor float64 4.0
xxxxxxxxxx
76
 
1
import bob.learn.em
2
import bob.core
3
import numpy
4
5
6
def gmm_from_data(data):
7
    """Reads a bob.learn.em.GMMMachine from a BEAT Data object"""
8
9
    dim_c, dim_d = data.means.shape
10
    gmm = bob.learn.em.GMMMachine(dim_c, dim_d)
11
    gmm.weights = data.weights
12
    gmm.means = data.means
13
    gmm.variances = data.variances
14
    gmm.variance_thresholds = data.variance_thresholds
15
    return gmm
16
17
18
19
def stats_from_data(data):
20
    """Reads a bob.learn.em.GMMStats from a BEAT Data object"""
21
22
    dim_c, dim_d = data.sum_px.shape
23
    stat = bob.learn.em.GMMStats(dim_c, dim_d)
24
    stat.t = int(data.t)
25
    stat.n = data.n
26
    stat.sum_px = data.sum_px
27
    stat.sum_pxx = data.sum_pxx
28
    return stat
29
30
31
class Algorithm:
32
33
    def __init__(self):
34
        self.isv_training_iterations = 10
35
        self.relevance_factor = 4.
36
        self.subspace_dimension_of_u = 50
37
        self.init_seed = 0
38
        self.data = {}
39
        self.ubm = None
40
41
    def setup(self, parameters):
42
        self.isv_training_iterations = parameters.get('isv-training-iterations', self.isv_training_iterations)
43
        self.relevance_factor = parameters.get('relevance-factor', self.relevance_factor)
44
        self.subspace_dimension_of_u = parameters.get('subspace-dimension-of-u', self.subspace_dimension_of_u)
45
        self.init_seed = parameters.get('init-seed', self.init_seed)
46
        return True
47
48
49
    def process(self, inputs, outputs):
50
51
        # retrieve the UBM once
52
        if self.ubm is None:
53
            self.ubm = gmm_from_data(inputs['ubm'].data)
54
55
        stats = stats_from_data(inputs["statistics"].data)
56
        c_id = inputs["client_id"].data.text
57
        if c_id in self.data.keys(): self.data[c_id].append(stats)
58
        else: self.data[c_id] = [stats]
59
60
        if not(inputs.hasMoreData()):
61
            # create array set used for training
62
            training_set = [v for k,v in self.data.iteritems()]
63
64
            isvbase = bob.learn.em.ISVBase(self.ubm, int(self.subspace_dimension_of_u))
65
            trainer = bob.learn.em.ISVTrainer(self.relevance_factor)
66
            rng = bob.core.random.mt19937(int(self.init_seed))
67
            bob.learn.em.train(trainer, isvbase, training_set, max_iterations=int(self.isv_training_iterations), rng=rng)
68
69
            # outputs data
70
            outputs["isvbase"].write({
71
                'subspace_u':              isvbase.u,
72
                'subspace_d':              isvbase.d,
73
            })
74
75
        return True
76

The code for this algorithm in Python
The ruler at 80 columns indicate suggested POSIX line breaks (for readability).
The editor will automatically enlarge to accomodate the entirety of your input
Use keyboard shortcuts for search/replace and faster editing. For example, use Ctrl-F (PC) or Cmd-F (Mac) to search through this box

For a Gaussian Mixture Models (GMM) mean supervector space, computes the within-class variability subspace (U subspace) described in [McCool2013]:

This algorithm relies on the Bob library.

The inputs are:

  • statistics: A training set of GMM Statistics.
  • ubm: A GMM corresponding to the Universal Background Model.
  • client_id: Client (class/subject) identifier as a text string.

The outputs are subspace_u and subspace_d for the session and the client offset respectivelly.

[McCool2013]
  1. McCool, et al.: Session variability modelling for face authentication. IET biometrics 2.3 (2013): 117-129.

Experiments

Updated Name Databases/Protocols Analyzers
pkorshunov/pkorshunov/isv-asv-pad-fusion-complete/1/asv_isv-pad_lbp_hist_ratios_lr-fusion_lr-pa_aligned avspoof/2@physicalaccess_verification,avspoof/2@physicalaccess_verify_train,avspoof/2@physicalaccess_verify_train_spoof,avspoof/2@physicalaccess_antispoofing,avspoof/2@physicalaccess_verification_spoof pkorshunov/spoof-score-fusion-roc_hist/1
pkorshunov/pkorshunov/isv-asv-pad-fusion-complete/1/asv_isv-pad_gmm-fusion_lr-pa avspoof/2@physicalaccess_verification,avspoof/2@physicalaccess_verify_train,avspoof/2@physicalaccess_verify_train_spoof,avspoof/2@physicalaccess_antispoofing,avspoof/2@physicalaccess_verification_spoof pkorshunov/spoof-score-fusion-roc_hist/1
pkorshunov/pkorshunov/isv-speaker-verification-spoof/1/isv-speaker-verification-spoof-pa avspoof/2@physicalaccess_verification,avspoof/2@physicalaccess_verification_spoof pkorshunov/eerhter_postperf_iso_spoof/1
pkorshunov/pkorshunov/isv-speaker-verification/1/isv-speaker-verification-licit avspoof/2@physicalaccess_verification pkorshunov/eerhter_postperf_iso/1
Created with Raphaël 2.1.2[compare]pkorshunov/isv_training/22016Mar18

This table shows the number of times this algorithm has been successfully run using the given environment. Note this does not provide sufficient information to evaluate if the algorithm will run when submitted to different conditions.

Terms of Service | Contact Information | BEAT platform version 2.2.1b0 | © Idiap Research Institute - 2013-2025