Bob 2.0 implementation of ISV scoring. All input ids are strings.

This algorithm is a legacy one. The API has changed since its implementation. New versions and forks will need to be updated.
This algorithm is splittable

Algorithms have at least one input and one output. All algorithm endpoints are organized in groups. Groups are used by the platform to indicate which inputs and outputs are synchronized together. The first group is automatically synchronized with the channel defined by the block in which the algorithm is deployed.

Group: probes

Endpoint Name Data Format Nature
probe_isv_offset system/array_1d_floats/1 Input
probe_statistics tutorial/gmm_statistics/1 Input
template_ids system/array_1d_text/1 Input
probe_id system/text/1 Input
probe_client_id system/text/1 Input
scores elie_khoury/string_probe_scores/1 Output

Group: templates

Endpoint Name Data Format Nature
template_model tpereira/isvmachine/1 Input
template_client_id system/text/1 Input
template_id system/text/1 Input

Group: train

Endpoint Name Data Format Nature
ubm tutorial/gmm/1 Input
isvbase tpereira/isvbase/1 Input
xxxxxxxxxx
110
 
1
import bob.learn.em
2
import numpy
3
4
5
6
def gmm_from_data(data):
7
    """Reads a bob.learn.em.GMMMachine from a BEAT Data object"""
8
9
    dim_c, dim_d = data.means.shape
10
    gmm = bob.learn.em.GMMMachine(dim_c, dim_d)
11
    gmm.weights = data.weights
12
    gmm.means = data.means
13
    gmm.variances = data.variances
14
    gmm.variance_thresholds = data.variance_thresholds
15
    return gmm
16
17
18
def isvbase_from_data(data, ubm):
19
    """Reads a bob.learn.em.ISVBase from a BEAT Data object"""
20
21
    dim_cd, dim_u = data.subspace_u.shape
22
    isvbase = bob.learn.em.ISVBase(ubm, dim_u)
23
    isvbase.u = data.subspace_u
24
    isvbase.d = data.subspace_d
25
    return isvbase
26
27
28
def stats_from_data(data):
29
    """Reads a bob.learn.em.GMMStats from a BEAT Data object"""
30
31
    dim_c, dim_d = data.sum_px.shape
32
    stat = bob.learn.em.GMMStats(dim_c, dim_d)
33
    stat.t = int(data.t)
34
    stat.n = data.n
35
    stat.sum_px = data.sum_px
36
    stat.sum_pxx = data.sum_pxx
37
    return stat
38
39
40
def isvmachine_from_data(data, isvbase):
41
    """Reads a bob.learn.em.ISVBase from a BEAT Data object"""
42
43
    isvmachine = bob.learn.em.ISVMachine(isvbase)
44
    isvmachine.z = data.latent_z
45
    return isvmachine
46
47
48
49
50
class Algorithm:
51
52
    def __init__(self):
53
        self.ubm       = None
54
        self.isvbase   = None
55
        self.templates = None
56
57
58
    def process(self, inputs, outputs):
59
60
        # retrieve the UBM once
61
        if self.ubm is None:
62
            inputs['ubm'].next()
63
            self.ubm = gmm_from_data(inputs['ubm'].data)
64
65
        # retrieve the ISVBase once
66
        if self.isvbase is None:
67
            inputs['isvbase'].next()
68
            self.isvbase = isvbase_from_data(inputs['isvbase'].data, self.ubm)
69
70
71
        # retrieve all the templates once
72
        if self.templates is None:
73
            self.templates = {}
74
            group = inputs.groupOf('template_model')
75
76
            while group.hasMoreData():
77
                group.next()
78
79
                template_id = group['template_id'].data.text
80
81
                self.templates[template_id] = dict(
82
                    client_id = group['template_client_id'].data.text,
83
                    model = isvmachine_from_data(group['template_model'].data, self.isvbase),
84
                )
85
86
        # process the probe
87
        template_ids = inputs['template_ids'].data.text
88
        statistics = stats_from_data(inputs['probe_statistics'].data)
89
        ux = inputs['probe_isv_offset'].data.value
90
91
        scores = []
92
        for template_id in template_ids:
93
            template_client_identity = self.templates[template_id]['client_id']
94
            model = self.templates[template_id]['model']
95
            
96
            
97
            score = model.forward_ux(statistics, ux)
98
99
            scores.append({
100
                'template_identity': template_client_identity,
101
                'score': score,
102
            })
103
104
        outputs['scores'].write({
105
                'client_identity': inputs['probe_client_id'].data.text,
106
                'scores': scores
107
            }            
108
        )
109
110
        return True

The code for this algorithm in Python
The ruler at 80 columns indicate suggested POSIX line breaks (for readability).
The editor will automatically enlarge to accomodate the entirety of your input
Use keyboard shortcuts for search/replace and faster editing. For example, use Ctrl-F (PC) or Cmd-F (Mac) to search through this box

Computes the ISV scoring.

Specific details can be found in Equation (40) in [McCool2013].

This algorithm relies on the Bob library.

The inputs are:

  • probe_isv_offset: The Session Offset of a probe.
  • probe_statistics: A set of GMM Statistics of a probe.
  • template_ids: A set of probe (class/subject) identifiers as an array of text strings.
  • ubm: A GMM corresponding to the Universal Background Model.
  • isvbase: The subspace_u and subspace_d for the session and the client offset respectivelly.
  • template_id: Client (class/subject) identifier as a text string.
  • template_model: The client model is the latent variable zi ( Eq. (31) in McCool2013) that corresponds to the client offset (with the session variations suppressed).

The output are the scores.

[McCool2013]
  1. McCool, et al.: Session variability modelling for face authentication. IET biometrics 2.3 (2013): 117-129.

Experiments

Updated Name Databases/Protocols Analyzers
pkorshunov/pkorshunov/isv-asv-pad-fusion-complete/1/asv_isv-pad_lbp_hist_ratios_lr-fusion_lr-pa_aligned avspoof/2@physicalaccess_verification,avspoof/2@physicalaccess_verify_train,avspoof/2@physicalaccess_verify_train_spoof,avspoof/2@physicalaccess_antispoofing,avspoof/2@physicalaccess_verification_spoof pkorshunov/spoof-score-fusion-roc_hist/1
pkorshunov/pkorshunov/isv-asv-pad-fusion-complete/1/asv_isv-pad_gmm-fusion_lr-pa avspoof/2@physicalaccess_verification,avspoof/2@physicalaccess_verify_train,avspoof/2@physicalaccess_verify_train_spoof,avspoof/2@physicalaccess_antispoofing,avspoof/2@physicalaccess_verification_spoof pkorshunov/spoof-score-fusion-roc_hist/1
pkorshunov/pkorshunov/isv-speaker-verification-spoof/1/isv-speaker-verification-spoof-pa avspoof/2@physicalaccess_verification,avspoof/2@physicalaccess_verification_spoof pkorshunov/eerhter_postperf_iso_spoof/1
pkorshunov/pkorshunov/isv-speaker-verification/1/isv-speaker-verification-licit avspoof/2@physicalaccess_verification pkorshunov/eerhter_postperf_iso/1
Created with Raphaël 2.1.2[compare]pkorshunov/isv_scoring/22016Mar18

This table shows the number of times this algorithm has been successfully run using the given environment. Note this does not provide sufficient information to evaluate if the algorithm will run when submitted to different conditions.

Terms of Service | Contact Information | BEAT platform version 2.2.1b0 | © Idiap Research Institute - 2013-2025