Bob 2.0 projection of features on GMM model. Input id is a string.

This algorithm is a legacy one. The API has changed since its implementation. New versions and forks will need to be updated.
This algorithm is splittable

Algorithms have at least one input and one output. All algorithm endpoints are organized in groups. Groups are used by the platform to indicate which inputs and outputs are synchronized together. The first group is automatically synchronized with the channel defined by the block in which the algorithm is deployed.

Group: main

Endpoint Name Data Format Nature
features system/array_2d_floats/1 Input
scores system/float/1 Output

Unnamed group

Endpoint Name Data Format Nature
classifier pkorshunov/two-classes-gmm/1 Input
xxxxxxxxxx
54
 
1
import numpy
2
import bob.learn.em
3
4
5
def gmm_from_data(data):
6
    """Loads a bob.learn.em.GMMMachine from a BEAT Data object"""
7
8
    dim_c, dim_d = data.means.shape
9
#    print("GMM shape: %s" % str(data.means.shape))
10
    
11
    gmm = bob.learn.em.GMMMachine(dim_c, dim_d)
12
    gmm.weights = data.weights
13
    gmm.means = data.means
14
    gmm.variances = data.variances
15
    gmm.variance_thresholds = data.variance_thresholds
16
    return gmm
17
18
19
class Algorithm:
20
21
    def __init__(self):
22
        self.gmm_one      = None
23
        self.gmm_two      = None
24
25
        
26
    def process(self, inputs, outputs):
27
28
        # retrieve the classifier (with two GMM models) once
29
        if self.gmm_one is None:
30
            inputs['classifier'].next()
31
            two_gmms = inputs['classifier'].data
32
            self.gmm_one = gmm_from_data(two_gmms.model_one)
33
            self.gmm_two = gmm_from_data(two_gmms.model_two)
34
35
        # read the features and project on both GMMs
36
        projection_one = 0
37
        projection_two = 0
38
        features = inputs['features'].data.value
39
        for feature in features:
40
            # project the feature on both GMMs, result of projection is a log likelihood
41
            projection_one += self.gmm_one.log_likelihood(feature)
42
            projection_two += self.gmm_two.log_likelihood(feature)
43
        projection_one /= features.shape[0]        
44
        projection_two /= features.shape[0]    
45
        
46
        # compute the score as the difference between two average log-likelihoods
47
        score = projection_one - projection_two
48
        # output the projection score
49
        outputs['scores'].write({
50
            'value': score
51
            })
52
        
53
        return True
54

The code for this algorithm in Python
The ruler at 80 columns indicate suggested POSIX line breaks (for readability).
The editor will automatically enlarge to accomodate the entirety of your input
Use keyboard shortcuts for search/replace and faster editing. For example, use Ctrl-F (PC) or Cmd-F (Mac) to search through this box

For a given set of feature vectors and a Gaussian Mixture Models (GMM), this algorithm implements the Maximum-a-posteriori (MAP) estimation (adapting only the means).

Details of MAP estimation can be found in the paper: Reynolds, Douglas A., Thomas F. Quatieri, and Robert B. Dunn. "Speaker verification using adapted Gaussian mixture models." Digital signal processing 10.1 (2000): 19-41. A very good description on how the MAP estimation works can be found in the `Mathematical Monks's <https://www.youtube.com/watch?v=kkhdIriddSI&index=31&list=PLD0F06AA0D2E8FFBA&spfreload=1>`_ YouTube channel.z

This algorithm relies on the `Bob <http://www.idiap.ch/software/bob/>`_ library.

Docutils System Messages

System Message: ERROR/3 (<string>, line 3); backlink

Unknown target name: "mathematical monks&amp;#39;s &amp;lt;https://www.youtube.com/watch?v=kkhdiriddsi&amp;amp;index=31&amp;amp;list=pld0f06aa0d2e8ffba&amp;amp;spfreload=1&amp;gt;".

System Message: ERROR/3 (<string>, line 6); backlink

Unknown target name: "bob &amp;lt;http://www.idiap.ch/software/bob/&amp;gt;".

Experiments

Updated Name Databases/Protocols Analyzers
pkorshunov/pkorshunov/isv-asv-pad-fusion-complete/1/asv_isv-pad_gmm-fusion_lr-pa avspoof/2@physicalaccess_verification,avspoof/2@physicalaccess_verify_train,avspoof/2@physicalaccess_verify_train_spoof,avspoof/2@physicalaccess_antispoofing,avspoof/2@physicalaccess_verification_spoof pkorshunov/spoof-score-fusion-roc_hist/1
pkorshunov/pkorshunov/speech-pad-simple/1/speech-pad_gmm-pa avspoof/2@physicalaccess_antispoofing pkorshunov/simple_antispoofing_analyzer/4
Created with Raphaël 2.1.2[compare]pkorshunov/gmm-two-models-projection/32016Apr2

This table shows the number of times this algorithm has been successfully run using the given environment. Note this does not provide sufficient information to evaluate if the algorithm will run when submitted to different conditions.

Terms of Service | Contact Information | BEAT platform version 2.2.1b0 | © Idiap Research Institute - 2013-2025