Bob 2.0 training of two GMMs for two types of features
Algorithms have at least one input and one output. All algorithm endpoints are organized in groups. Groups are used by the platform to indicate which inputs and outputs are synchronized together. The first group is automatically synchronized with the channel defined by the block in which the algorithm is deployed.
Endpoint Name | Data Format | Nature |
---|---|---|
features | system/array_2d_floats/1 | Input |
class | system/text/1 | Input |
classifier | pkorshunov/two-classes-gmm/1 | Output |
Parameters allow users to change the configuration of an algorithm when scheduling an experiment
Name | Description | Type | Default | Range/Choices |
---|---|---|---|---|
number-of-gaussians | The number of Gaussian Components | uint32 | 100 | |
maximum-number-of-iterations | The maximum number of iterations for the EM algorithm | uint32 | 10 |
xxxxxxxxxx
import numpy
import bob.learn.em
class Algorithm:
def __init__(self):
self.number_of_gaussians = 100
self.max_iterations = 10
self.positives = []
self.negatives = []
def setup(self, parameters):
self.number_of_gaussians = parameters.get('number-of-gaussians',
self.number_of_gaussians)
self.max_iterations = parameters.get('maximum-number-of-iterations',
self.max_iterations)
return True
def create_gmm(self, training_data):
input_size = training_data.shape[1]
# create the KMeans and GMM machine
kmeans = bob.learn.em.KMeansMachine(int(self.number_of_gaussians), input_size)
gmm = bob.learn.em.GMMMachine(int(self.number_of_gaussians), input_size)
# create the KMeansTrainer
kmeans_trainer = bob.learn.em.KMeansTrainer('RANDOM_NO_DUPLICATE')
# train using the KMeansTrainer
bob.learn.em.train(kmeans_trainer, kmeans, training_data, int(self.max_iterations))
(variances, weights) = kmeans.get_variances_and_weights_for_each_cluster(training_data)
means = kmeans.means
# initialize the GMM
gmm.means = means
gmm.variances = variances
gmm.weights = weights
# train the GMM
trainer = bob.learn.em.ML_GMMTrainer()
bob.learn.em.train(trainer, gmm, training_data, int(self.max_iterations))
return gmm
def process(self, inputs, outputs):
# accumulates the input data in different
# containers for hit or miss
feature_vector = inputs["features"].data.value
if inputs["class"].data.text == 'real':
self.positives.append(feature_vector)
else:
self.negatives.append(feature_vector)
if not(inputs.hasMoreData()):
# create array set used for training
self.positives = numpy.vstack(self.positives)
self.negatives = numpy.vstack(self.negatives)
gmm_real = self.create_gmm(self.positives)
gmm_attacks = self.create_gmm(self.negatives)
# outputs data
outputs["classifier"].write({
"model_one": {
'weights': gmm_real.weights,
'means': gmm_real.means,
'variances': gmm_real.variances,
'variance_thresholds': gmm_real.variance_thresholds,
},
"model_two": {
'weights': gmm_attacks.weights,
'means': gmm_attacks.means,
'variances': gmm_attacks.variances,
'variance_thresholds': gmm_attacks.variance_thresholds,
},
})
return True
The code for this algorithm in Python
The ruler at 80 columns indicate suggested POSIX line breaks (for readability).
The editor will automatically enlarge to accomodate the entirety of your input
Use keyboard shortcuts for search/replace and faster editing. For example, use Ctrl-F (PC) or Cmd-F (Mac) to search through this box
Implements a GMM-based training, each GMM model for each of two types of data
Updated | Name | Databases/Protocols | Analyzers | |||
---|---|---|---|---|---|---|
pkorshunov/pkorshunov/isv-asv-pad-fusion-complete/1/asv_isv-pad_gmm-fusion_lr-pa | avspoof/2@physicalaccess_verification,avspoof/2@physicalaccess_verify_train,avspoof/2@physicalaccess_verify_train_spoof,avspoof/2@physicalaccess_antispoofing,avspoof/2@physicalaccess_verification_spoof | pkorshunov/spoof-score-fusion-roc_hist/1 | ||||
pkorshunov/pkorshunov/speech-pad-simple/1/speech-pad_gmm-pa | avspoof/2@physicalaccess_antispoofing | pkorshunov/simple_antispoofing_analyzer/4 |
This table shows the number of times this algorithm has been successfully run using the given environment. Note this does not provide sufficient information to evaluate if the algorithm will run when submitted to different conditions.