Bob 2.0 standard metrics for biometric system evaluation. Scores use strings for template ids.

This algorithm is a legacy one. The API has changed since its implementation. New versions and forks will need to be updated.
This algorithm is an analyzer. It can only be used on analysis blocks.

Algorithms have at least one input and one output. All algorithm endpoints are organized in groups. Groups are used by the platform to indicate which inputs and outputs are synchronized together. The first group is automatically synchronized with the channel defined by the block in which the algorithm is deployed.

Group: test

Endpoint Name Data Format Nature
scores_test elie_khoury/string_probe_scores/1 Input

Group: dev

Endpoint Name Data Format Nature
scores_dev elie_khoury/string_probe_scores/1 Input

Group: test_attacks

Endpoint Name Data Format Nature
scores_test_attacks elie_khoury/string_probe_scores/1 Input

Analyzers may produce any number of results. Once experiments using this analyzer are done, you may display the results or filter experiments using criteria based on them.

Name Type
far_test float32
number_of_negatives_dev int32
frr_test float32
far_dev float32
eer float32
number_of_negatives_test int32
roc_test plot/isoroc/1
roc_dev plot/isoroc/1
threshold float32
frr_dev float32
hter float32
number_of_positives_test int32
number_of_positives_dev int32
xxxxxxxxxx
84
 
1
import bob.measure
2
import numpy
3
4
5
class Algorithm:
6
7
    def __init__(self):
8
        self.positives_dev = None
9
        self.negatives_dev = []
10
        self.positives_test = []
11
        self.negatives_test = None
12
13
    def process(self, inputs, output):
14
15
        # accumulate the dev scores
16
        if self.positives_dev is None:
17
            self.positives_dev = []
18
            while inputs['scores_dev'].hasMoreData():
19
                inputs['scores_dev'].next()
20
                data_dev = inputs['scores_dev'].data
21
                self.positives_dev.extend([k.score for k in data_dev.scores if k.template_identity == data_dev.client_identity])
22
                self.negatives_dev.extend([k.score for k in data_dev.scores if k.template_identity != data_dev.client_identity])
23
24
        if self.negatives_test is None:
25
            self.negatives_test = []
26
            while inputs['scores_test_attacks'].hasMoreData():
27
                inputs['scores_test_attacks'].next()
28
                data_dev = inputs['scores_test_attacks'].data
29
                # attacks are negative set for the test set
30
                self.negatives_test.extend([k.score for k in data_dev.scores if k.template_identity == data_dev.client_identity])
31
                
32
        # accumulate the test scores
33
        data_test = inputs['scores_test'].data
34
        # we do not consider zero-impostors for test set, hence we take only positive set here
35
        self.positives_test.extend([k.score for k in data_test.scores if k.template_identity == data_test.client_identity])
36
37
        # once all values are received, evaluate the scores
38
        if not(inputs.hasMoreData()):
39
            eer_threshold = bob.measure.eer_threshold(self.negatives_dev, self.positives_dev)
40
            far_dev, frr_dev   = bob.measure.farfrr(self.negatives_dev, self.positives_dev, eer_threshold)
41
            far_test, frr_test = bob.measure.farfrr(self.negatives_test, self.positives_test, eer_threshold)
42
            roc_points_dev     = bob.measure.roc(self.negatives_dev, self.positives_dev, 100)
43
            roc_points_test    = bob.measure.roc(self.negatives_test, self.positives_test, 100)
44
45
            # writes the output back to the platform
46
            output.write({
47
                'eer': numpy.float32((far_dev+frr_dev) / 2.),
48
                'hter': numpy.float32((far_test+frr_test) / 2.),
49
                'far_dev': numpy.float32(far_dev),
50
                'frr_dev': numpy.float32(frr_dev),
51
                'far_test': numpy.float32(far_test),
52
                'frr_test': numpy.float32(frr_test),
53
                'number_of_positives_dev': numpy.int32(len(self.positives_dev)),
54
                'number_of_negatives_dev': numpy.int32(len(self.negatives_dev)),
55
                'number_of_positives_test': numpy.int32(len(self.positives_test)),
56
                'number_of_negatives_test': numpy.int32(len(self.negatives_test)),
57
                'threshold': numpy.float32(eer_threshold),
58
                'roc_dev': {
59
                    "data":
60
                        [
61
                            {
62
                                "label": "roc",
63
                                "false_positives": roc_points_dev[0],
64
                                "false_negatives": roc_points_dev[1],
65
                                "number_of_positives": numpy.uint64(len(self.positives_dev)),
66
                                "number_of_negatives": numpy.uint64(len(self.negatives_dev)),
67
                            }
68
                        ]
69
                    },
70
                'roc_test': {
71
                    "data":
72
                        [
73
                            {
74
                                "label": "roc",
75
                                "false_positives": roc_points_test[0],
76
                                "false_negatives": roc_points_test[1],
77
                                "number_of_positives": numpy.uint64(len(self.positives_test)),
78
                                "number_of_negatives": numpy.uint64(len(self.negatives_test)),
79
                            }
80
                        ]
81
                    }
82
            })
83
84
        return True

The code for this algorithm in Python
The ruler at 80 columns indicate suggested POSIX line breaks (for readability).
The editor will automatically enlarge to accomodate the entirety of your input
Use keyboard shortcuts for search/replace and faster editing. For example, use Ctrl-F (PC) or Cmd-F (Mac) to search through this box

An algorithm that implements standard metrics for biometric system evaluation.

Specifically, it returns:

  • eer: the equal error rate (EER) on the development set.
  • hter: the half total error rate (HTER) on the test set
  • far_dev: the false acceptance rate (FAR) on the development set
  • frr_dev: the false rejection rate (FRR) on the development set
  • far_dev: the false acceptance rate (FAR) on the test set
  • frr_test: the false rejection rate (FRR) on the test set
  • number_of_positives_dev: the number of positive (genuine) trials on the development set
  • number_of_negatives_dev: the number of negative (impostor) trials on the development set
  • number_of_positives_test: the number of positive (genuine) trials on the test set
  • number_of_negatives_test: the number of negative (impostor) trials on the test set
  • threshold: the threshold at the equal error rate on the development set
  • roc_dev: the receiver operating characteristic (ROC) curve on the development set according to the biometrics standard ISO/IEC 19795-1:2006(E)
  • roc_test: the receiver operating characteristic (ROC) curve on the test set according to the biometrics standard ISO/IEC 19795-1:2006(E)

This implementation relies on the 'measure' package from the Bob library.

Experiments

Updated Name Databases/Protocols Analyzers
pkorshunov/pkorshunov/isv-speaker-verification-spoof/1/isv-speaker-verification-spoof-pa avspoof/2@physicalaccess_verification,avspoof/2@physicalaccess_verification_spoof pkorshunov/eerhter_postperf_iso_spoof/1
Created with Raphaël 2.1.2[compare]tutorial/eerhter_postperf/1siebenkopf/ROC/14Jun29siebenkopf/EER_HTER/82014Nov17tutorial/eerhter_postperf_iso/1siebenkopf/ROC/156anjos/livdet_analysis/1May7pkorshunov/eerhter_postperf_iso/12015Sep17pkorshunov/eerhter_postperf_iso_spoof/1Mar182016Apr6

This table shows the number of times this algorithm has been successfully run using the given environment. Note this does not provide sufficient information to evaluate if the algorithm will run when submitted to different conditions.

Terms of Service | Contact Information | BEAT platform version 2.2.1b0 | © Idiap Research Institute - 2013-2025