Crops face bounding box and normalizes it by size
Algorithms have at least one input and one output. All algorithm endpoints are organized in groups. Groups are used by the platform to indicate which inputs and outputs are synchronized together. The first group is automatically synchronized with the channel defined by the block in which the algorithm is deployed.
Endpoint Name | Data Format | Nature |
---|---|---|
video | system/array_4d_uint8/1 | Input |
annotations | system/bounding_box_video/1 | Input |
cropped_faces | system/array_3d_uint8/1 | Output |
Parameters allow users to change the configuration of an algorithm when scheduling an experiment
Name | Description | Type | Default | Range/Choices |
---|---|---|---|---|
normed-height | uint32 | 64 | ||
normed-width | uint32 | 64 | ||
minimum-face-size | uint32 | 50 |
xxxxxxxxxx
import numpy
import bob
class Algorithm:
def __init__(self):
self.normed_height = 64
self.normed_width = 64
self.minimum_face_size = 50 # minimum size of a valid face
def setup(self, parameters):
self.normed_height = parameters.get('crop-height', self.normed_height)
self.normed_width = parameters.get('crop-width', self.normed_width)
self.right_eye_y = parameters.get('minimum-face-size', self.minimum_face_size)
return True
def process(self, inputs, outputs):
video = inputs["video"].data.value
annotations = inputs["annotations"].data.value
preproc_faces_array = numpy.ndarray([video.shape[0], self.normed_height, self.normed_width], 'uint8')
for i in range(video.shape[0]): #range(video.shape[0], -1, -1):
frame = bob.ip.rgb_to_gray(video[i,:,:,:])
if annotations[i].height < self.minimum_face_size or annotations[i].width < self.minimum_face_size:
continue # don't add the invalid frames
cropped_face = bob.ip.crop(frame, int(getattr(annotations[i], 'top-left-y')), int(getattr(annotations[i], 'top-left-x')), int(annotations[i].height), int(annotations[i].width))
tempbbx = numpy.ndarray((self.normed_height, self.normed_width), 'float64')
normed_face = numpy.ndarray((self.normed_height, self.normed_width), 'uint8')
bob.ip.scale(cropped_face, tempbbx) # normalization
tempbbx_ = tempbbx + 0.5
tempbbx_ = numpy.floor(tempbbx_)
normed_face = numpy.cast['uint8'](tempbbx_)
preproc_faces_array[i] = normed_face
outputs["cropped_faces"].write({
'value': preproc_faces_array
})
return True
The code for this algorithm in Python
The ruler at 80 columns indicate suggested POSIX line breaks (for readability).
The editor will automatically enlarge to accomodate the entirety of your input
Use keyboard shortcuts for search/replace and faster editing. For example, use Ctrl-F (PC) or Cmd-F (Mac) to search through this box
This algorithm performs pre-processing of the input videos in two steps:
Parameters:
This algorithm relies on the Bob library.
Updated | Name | Databases/Protocols | Analyzers | |||
---|---|---|---|---|---|---|
smarcel/ivana7c/simple-antispoofing-updated/1/replay2-antispoofing-lbp-histograms-fix | replay/3@grandtest | Kanma/iqm_spoof_eer_analyzer/1 | ||||
sbhatta/ivana7c/simple-antispoofing-updated/1/replay2-antispoofing-lbp-histograms | replay/2@grandtest | sbhatta/iqm_spoof_eer_analyzer/9 | ||||
smarcel/ivana7c/simple-antispoofing-updated/1/antispoof-chi2-expA-rr22 | replay/1@countermeasure | ivana7c/spoofing_eer/1 | ||||
ivana7c/ivana7c/simple-antispoofing-updated/1/antispoof-chi2-expA | replay/1@countermeasure | ivana7c/spoofing_eer/1 |
This table shows the number of times this algorithm has been successfully run using the given environment. Note this does not provide sufficient information to evaluate if the algorithm will run when submitted to different conditions.