This algorithm is a legacy one. The API has changed since its implementation. New versions and forks will need to be updated.
This algorithm is splittable

Algorithms have at least one input and one output. All algorithm endpoints are organized in groups. Groups are used by the platform to indicate which inputs and outputs are synchronized together. The first group is automatically synchronized with the channel defined by the block in which the algorithm is deployed.

Group: main

Endpoint Name Data Format Nature
features system/array_2d_floats/1 Input
client_id system/uint64/1 Input
subspace chichan/a-collection-of-linear_machines/1 Output

Parameters allow users to change the configuration of an algorithm when scheduling an experiment

Name Description Type Default Range/Choices
percentage-of-pca-energy float32 0.9800000190734863
xxxxxxxxxx
76
 
1
import bob
2
import numpy
3
4
5
class Algorithm:
6
7
    def __init__(self):
8
        self.percentage_of_pca_energy = 0.98
9
        self.data = {}
10
11
12
    def setup(self, parameters):
13
        self.percentage_of_pca_energy = parameters.get('percentage-of-pca-energy',
14
                                                   self.percentage_of_pca_energy)
15
        return True
16
17
    def _perform_pca(self, pca_machine, training_set):
18
        # "Perform PCA on data"
19
        data = []
20
        for client_features in training_set:
21
            data.append(numpy.vstack([machine(feature) for feature in client_features]))
22
        return data
23
24
    def process(self, inputs, outputs):
25
        features = inputs['features'].data.value
26
27
        c_id = inputs["client_id"].data.value
28
        machines=[]
29
        if c_id in self.data.keys():
30
            for idx in xrange(features.shape[0]) :
31
                self.data[c_id][idx].append(features[idx])
32
        else: 
33
            feature_dict={}
34
            for idx in xrange(features.shape[0]) :
35
                feature_dict[idx]=[features[idx]]           
36
            self.data[c_id] = feature_dict
37
        if not(inputs.hasMoreData()):            
38
#            numpy.lib.asarray_chkfinite(self.data[self.data.keys()[0]][self.data[self.data.keys()[0]].keys()[0]][0])
39
#            assert(len(self.data[self.data.keys()[0]][self.data[self.data.keys()[0]].keys()[0]][0])==0,'data[c_id][0]==0')
40
#            assert(len(self.data[self.data.keys()[0]][self.data[self.data.keys()[0]].keys()[0]][0])>=59,'data[c_id][0]>=59')
41
#            assert(len(self.data[self.data.keys()[0]][self.data[self.data.keys()[0]].keys()[0]][0])<=59,'data[c_id][0]>=59')
42
            for i in self.data[self.data.keys()[0]].keys():
43
                # PCA
44
                data_pca = numpy.vstack([self.data[j_id][i] for j_id in self.data.keys()])
45
#                if data_pca.shape[1]==59:
46
#                    print cc
47
                trainer = bob.trainer.PCATrainer()
48
                pca_machine, eigen_values = trainer.train(data_pca)
49
                del data_pca # Reduce memory usage
50
                #remove zeros
51
                non_zeros_idx=len(numpy.where(eigen_values>0)[0])
52
                n_eigen_values=eigen_values.copy()
53
                n_eigen_values.resize(non_zeros_idx)
54
                assert(eigen_values == n_eigen_values,'eigen_values == n_eigen_values')
55
                cum_eigen_values=numpy.cumsum(n_eigen_values/sum(n_eigen_values))
56
                number_of_pca_components=numpy.where(cum_eigen_values >self.percentage_of_pca_energy)[0]
57
                if (cum_eigen_values[0]>=0.985):
58
                    print aa
59
                    
60
                pca_machine.resize(pca_machine.shape[0], (number_of_pca_components[0]+1))
61
                # outputs data
62
                numpy.lib.asarray_chkfinite(pca_machine.weights)
63
                machines.append({
64
                        'input_subtract': pca_machine.input_subtract,
65
                        'input_divide':   pca_machine.input_divide,
66
                        'weights':        pca_machine.weights,
67
                        'biases':         pca_machine.biases
68
                    })
69
        # outputs data
70
            outputs["subspace"].write({"machine_array": machines})            
71
            print machines[0]
72
            print machines[-1]
73
74
        
75
        return True
76

The code for this algorithm in Python
The ruler at 80 columns indicate suggested POSIX line breaks (for readability).
The editor will automatically enlarge to accomodate the entirety of your input
Use keyboard shortcuts for search/replace and faster editing. For example, use Ctrl-F (PC) or Cmd-F (Mac) to search through this box

This algorithm performs principal component analysis (PCA) [PCA] on a given dataset using the singular value decomposition (SVD) [SVD], followed by linear discriminant analysis (LDA) [LDA].

This implementation relies on the `Bob &lt;http://www.idiap.ch/software/bob&gt;`_ library.

The inputs are:

  • image: A training set of floating point vectors as a two-dimensional array of floats (64 bits), the number of rows corresponding to the number of training samples, and the number of columns to the dimensionality of the training samples.
  • client_id: Client (class/subject) identifier as an unsigned 64 bits integer.

The outputs are subspace_pca and subspace_lda for the PCA and LDA transformation, respectively.

[SVD]http://en.wikipedia.org/wiki/Singular_value_decomposition
[PCA]http://en.wikipedia.org/wiki/Principal_component_analysis
[LDA]http://en.wikipedia.org/wiki/Linear_discriminant_analysis

Docutils System Messages

System Message: ERROR/3 (<string>, line 5); backlink

Unknown target name: "bob &lt;http://www.idiap.ch/software/bob&gt;".

Experiments

Updated Name Databases/Protocols Analyzers
smarcel/chichan/full_pre_mlbphs_projection/2/mobio-m_TT_MLBPH_PCA98_postperf-iso mobio/2@male tutorial/eerhter_postperf_iso/1
smarcel/chichan/full_pre_mlbphs_projection/2/mobio-f_TT_MLBPH_PCA98_postperf-iso mobio/2@female tutorial/eerhter_postperf_iso/1
chichan/chichan/full_pre_mlbphs_projection/2/Prep_MLBPH_XM2VTS_nouniform_PCA xm2vts/1@darkened-lp1,xm2vts/1@lp1 tutorial/eerhter_postperf/1
chichan/chichan/full_pre_mlbphs_projection/2/Prep_MLBPH_XM2VTS_PCA xm2vts/1@darkened-lp1,xm2vts/1@lp1 tutorial/eerhter_postperf/1
Created with Raphaël 2.1.2[compare]chichan/comp_pca/22015Nov22

This table shows the number of times this algorithm has been successfully run using the given environment. Note this does not provide sufficient information to evaluate if the algorithm will run when submitted to different conditions.

Terms of Service | Contact Information | BEAT platform version 2.2.1b0 | © Idiap Research Institute - 2013-2025