This algorithm is a legacy one. The API has changed since its implementation. New versions and forks will need to be updated.
This algorithm is splittable

Algorithms have at least one input and one output. All algorithm endpoints are organized in groups. Groups are used by the platform to indicate which inputs and outputs are synchronized together. The first group is automatically synchronized with the channel defined by the block in which the algorithm is deployed.

Group: main

Endpoint Name Data Format Nature
features system/array_2d_floats/1 Input
client_id system/uint64/1 Input
subspace chichan/a-collection-of-linear_machines/1 Output

Parameters allow users to change the configuration of an algorithm when scheduling an experiment

Name Description Type Default Range/Choices
percentage-of-pca-energy float32 0.949999988079071
number-of-lda-components uint32 30
xxxxxxxxxx
113
 
1
import bob
2
import numpy
3
4
5
class Algorithm:
6
7
    def __init__(self):
8
        self.percentage_of_pca_energy = 0.98
9
        self.number_of_lda_components = 30
10
        self.data = {}
11
12
13
    def setup(self, parameters):
14
        self.percentage_of_pca_energy = parameters.get('percentage-of-pca-energy',
15
                                                   self.percentage_of_pca_energy)
16
        self.number_of_lda_components = parameters.get('number-of-lda-components',
17
                                                   self.number_of_lda_components)
18
        return True
19
20
    def _project_data_for_lda(self, machine,i):
21
        tdata = []
22
        for client_id, client_files in self.data.iteritems():
23
            # at least two files per client are required!
24
            if len(client_files) < 2:
25
                # "Skipping client since the number of client files is only %d" %len(client_files)
26
                continue
27
            tdata.append(numpy.vstack([machine(feature) for feature in client_files[i]]))
28
        return tdata
29
30
    def _perform_pca(self, pca_machine, training_set):
31
        # "Perform PCA on data"
32
        data = []
33
        for client_features in training_set:
34
            data.append(numpy.vstack([machine(feature) for feature in client_features]))
35
        return data
36
37
    def process(self, inputs, outputs):
38
        features = inputs['features'].data.value
39
40
        c_id = inputs["client_id"].data.value
41
        machines=[]
42
        if c_id in self.data.keys():
43
            for idx in xrange(features.shape[0]) :
44
                self.data[c_id][idx].append(features[idx])
45
        else: 
46
            feature_dict={}
47
            for idx in xrange(features.shape[0]) :
48
                feature_dict[idx]=[features[idx]]           
49
            self.data[c_id] = feature_dict
50
        if not(inputs.hasMoreData()):            
51
#            numpy.lib.asarray_chkfinite(self.data[self.data.keys()[0]][self.data[self.data.keys()[0]].keys()[0]][0])
52
#            assert(len(self.data[self.data.keys()[0]][self.data[self.data.keys()[0]].keys()[0]][0])==0,'data[c_id][0]==0')
53
#            assert(len(self.data[self.data.keys()[0]][self.data[self.data.keys()[0]].keys()[0]][0])>=59,'data[c_id][0]>=59')
54
#            assert(len(self.data[self.data.keys()[0]][self.data[self.data.keys()[0]].keys()[0]][0])<=59,'data[c_id][0]>=59')
55
            lda_trainer = bob.trainer.FisherLDATrainer()
56
            trainer = bob.trainer.PCATrainer()    
57
            for i in self.data[self.data.keys()[0]].keys():
58
                # PCA
59
                data_pca = numpy.vstack([self.data[j_id][i] for j_id in self.data.keys()])
60
#                if data_pca.shape[1]==59:
61
#                    print cc
62
63
64
                pca_machine, eigen_values = trainer.train(data_pca)
65
                del data_pca # Reduce memory usage
66
                #remove zeros
67
                non_zeros_idx=len(numpy.where(eigen_values>0)[0])
68
                n_eigen_values=eigen_values.copy()
69
                n_eigen_values.resize(non_zeros_idx)
70
                assert(eigen_values == n_eigen_values,'eigen_values == n_eigen_values')
71
                cum_eigen_values=numpy.cumsum(n_eigen_values/sum(n_eigen_values))
72
                number_of_pca_components=numpy.where(cum_eigen_values >self.percentage_of_pca_energy)[0]
73
74
                if number_of_pca_components[0] <2 :
75
                    raise ValueError('number_of_pca_components_%d[0]:%d'%(i,number_of_pca_components[0]))                        
76
                pca_machine.resize(pca_machine.shape[0], (number_of_pca_components[0]+1))
77
                # outputs data
78
                numpy.lib.asarray_chkfinite(pca_machine.weights)
79
               
80
                # LDA
81
                data_lda = self._project_data_for_lda(pca_machine,i)
82
83
                lda_machine, lda_variances = lda_trainer.train(data_lda)
84
                del data_lda # Reduce memory usage
85
                if lda_machine.shape[1]>lda_machine.shape[0] :
86
                    lda_machine.resize(lda_machine.shape[0], lda_machine.shape[0])                
87
                
88
                if lda_machine.shape[1]>int(self.number_of_lda_components) :
89
                    lda_machine.resize(lda_machine.shape[0], int(self.number_of_lda_components))
90
                    
91
                if numpy.isnan(lda_machine.weights).any() or numpy.isinf(lda_machine.weights).any():
92
                    raise ValueError([lda_variances,number_of_LDA_components,number_of_pca_components[0]+1,lda_machine.shape, len(number_of_LDA_components)])                      
93
                
94
                   
95
                pcalda_subspace = numpy.dot(pca_machine.weights,lda_machine.weights)
96
                if numpy.isnan(pcalda_subspace).any() or numpy.isinf(pcalda_subspace).any():
97
                    raise ValueError(pcalda_subspace.shape) 
98
99
100
                machines.append({
101
                        'input_subtract': pca_machine.input_subtract,
102
                        'input_divide':   pca_machine.input_divide,
103
                        'weights':        pcalda_subspace,
104
                        'biases':         lda_machine.biases
105
                    })
106
        # outputs data
107
            outputs["subspace"].write({"machine_array": machines})            
108
            print machines[0]
109
            print machines[-1]
110
111
        
112
        return True
113

The code for this algorithm in Python
The ruler at 80 columns indicate suggested POSIX line breaks (for readability).
The editor will automatically enlarge to accomodate the entirety of your input
Use keyboard shortcuts for search/replace and faster editing. For example, use Ctrl-F (PC) or Cmd-F (Mac) to search through this box

This algorithm performs principal component analysis (PCA) [PCA] on a given dataset using the singular value decomposition (SVD) [SVD], followed by linear discriminant analysis (LDA) [LDA].

This implementation relies on the `Bob &lt;http://www.idiap.ch/software/bob&gt;`_ library.

The inputs are:

  • image: A training set of floating point vectors as a two-dimensional array of floats (64 bits), the number of rows corresponding to the number of training samples, and the number of columns to the dimensionality of the training samples.
  • client_id: Client (class/subject) identifier as an unsigned 64 bits integer.

The outputs are subspace_pca and subspace_lda for the PCA and LDA transformation, respectively.

[SVD]http://en.wikipedia.org/wiki/Singular_value_decomposition
[PCA]http://en.wikipedia.org/wiki/Principal_component_analysis
[LDA]http://en.wikipedia.org/wiki/Linear_discriminant_analysis

Docutils System Messages

System Message: ERROR/3 (<string>, line 5); backlink

Unknown target name: "bob &lt;http://www.idiap.ch/software/bob&gt;".

Experiments

Updated Name Databases/Protocols Analyzers
smarcel/chichan/full_pre_mlbphs_projection/2/mobio-f_TT_MLBPH_PCA98_LDA300_postperf-iso mobio/2@female tutorial/eerhter_postperf_iso/1
smarcel/chichan/full_pre_mlbphs_projection/2/mobio-m_TT_MLBPH_PCA98_LDA300_postperf-iso mobio/2@male tutorial/eerhter_postperf_iso/1
chichan/chichan/full_pre_mlbphs_projection/2/Prep_MLBPH_XM2VTS_LDA xm2vts/1@darkened-lp1,xm2vts/1@lp1 tutorial/eerhter_postperf/1
chichan/chichan/full_pre_mlbphs_projection/2/Prep_MLBPH_XM2VTS_no_uniform_p98LDA xm2vts/1@darkened-lp1,xm2vts/1@lp1 tutorial/eerhter_postperf/1
Created with Raphaël 2.1.2[compare]chichan/comp_combine-lda-and-pca-weight-together/1102015Nov25

This table shows the number of times this algorithm has been successfully run using the given environment. Note this does not provide sufficient information to evaluate if the algorithm will run when submitted to different conditions.

Terms of Service | Contact Information | BEAT platform version 2.2.1b0 | © Idiap Research Institute - 2013-2025