Algorithms have at least one input and one output. All algorithm endpoints are organized in groups. Groups are used by the platform to indicate which inputs and outputs are synchronized together. The first group is automatically synchronized with the channel defined by the block in which the algorithm is deployed.
Endpoint Name | Data Format | Nature |
---|---|---|
keystroke | tutorial/atvs_keystroke/1 | Input |
template_id | system/text/1 | Input |
keystroke_model | aythamimm/keystroke_model/8 | Output |
xxxxxxxxxx
import numpy
def mad(lst):
if len(lst) < 1:
return None
if not(isinstance(lst[0], list)):
vec=[];
m=numpy.median(lst);
for i in range(len(lst)):
vec.append(abs(lst[i]-m));
return numpy.median(vec)
else:
mad_vec=[];
for i in range(len(lst[0])):
vec=[];
for j in range(len(lst)):
vec.append(lst[j][i]);
m=numpy.mean(vec);
vec=[];
for j in range(len(lst)):
vec.append(abs(lst[j][i]-m));
mad_vec.append(numpy.mean(vec)+0.00001);
return mad_vec
class Algorithm:
def __init__(self):
self._features1 = []
self._features2 = []
self._features3 = []
self._features4 = []
self._features5 = []
def process(self, inputs, outputs):
# collect all the features for the current template
data = inputs['keystroke'].data
f1 = data.holdtime.given_name
f2 = data.rplatency.given_name
feature_vector=[]
l_f=len(f1)
for i_k in range(l_f):
feature_vector.append(float(f1[i_k]))
l_f=len(f2)
for i_k in range(l_f):
feature_vector.append(float(f2[i_k]))
self._features1.append(feature_vector)
f1 = data.holdtime.family_name
f2 = data.rplatency.family_name
feature_vector=[]
l_f=len(f1)
for i_k in range(l_f):
feature_vector.append(float(f1[i_k]))
l_f=len(f2)
for i_k in range(l_f):
feature_vector.append(float(f2[i_k]))
self._features2.append(feature_vector)
f1 = data.holdtime.email
f2 = data.rplatency.email
feature_vector=[]
l_f=len(f1)
for i_k in range(l_f):
feature_vector.append(float(f1[i_k]))
l_f=len(f2)
for i_k in range(l_f):
feature_vector.append(float(f2[i_k]))
self._features3.append(feature_vector)
f1 = data.holdtime.nationality
f2 = data.rplatency.nationality
feature_vector=[]
l_f=len(f1)
for i_k in range(l_f):
feature_vector.append(float(f1[i_k]))
l_f=len(f2)
for i_k in range(l_f):
feature_vector.append(float(f2[i_k]))
self._features4.append(feature_vector)
f1 = data.holdtime.id_number
f2 = data.rplatency.id_number
feature_vector=[]
l_f=len(f1)
for i_k in range(l_f):
feature_vector.append(float(f1[i_k]))
l_f=len(f2)
for i_k in range(l_f):
feature_vector.append(float(f2[i_k]))
self._features5.append(feature_vector)
# Calculate mean and std
if inputs["template_id"].isDataUnitDone():
features11 = numpy.average(self._features1, axis=0)
features12 = numpy.std(self._features1, axis=0)
features13 = mad(self._features1)
features21 = numpy.average(self._features2, axis=0)
features22 = numpy.std(self._features2, axis=0)
features23 = mad(self._features2)
features31 = numpy.average(self._features3, axis=0)
features32 = numpy.std(self._features3, axis=0)
features33 = mad(self._features3)
features41 = numpy.average(self._features4, axis=0)
features42 = numpy.std(self._features4, axis=0)
features43 = mad(self._features4)
features51 = numpy.average(self._features5, axis=0)
features52 = numpy.std(self._features5, axis=0)
features53 = mad(self._features5)
# outputs data
outputs["keystroke_model"].write({
'given_name_average': features11,
'given_name_std': features12,
'given_name_mad': features13,
'family_name_average': features21,
'family_name_std': features22,
'family_name_mad': features23,
'email_average': features31,
'email_std': features32,
'email_mad': features33,
'nationality_average': features41,
'nationality_std': features42,
'nationality_mad': features43,
'id_number_average': features51,
'id_number_std': features52,
'id_number_mad': features53,
})
self._features1 = []
self._features2 = []
self._features3 = []
self._features4 = []
self._features5 = []
return True
The code for this algorithm in Python
The ruler at 80 columns indicate suggested POSIX line breaks (for readability).
The editor will automatically enlarge to accomodate the entirety of your input
Use keyboard shortcuts for search/replace and faster editing. For example, use Ctrl-F (PC) or Cmd-F (Mac) to search through this box
This algorithm is designed to be used as a simple enrollment strategy of keystroke data. It enrolls a model from several features by computing the average and standard deviation of the enrollment features.
Note
All features must have the same length.
Updated | Name | Databases/Protocols | Analyzers | |||
---|---|---|---|---|---|---|
robertodaza/aythamimm/atvs_keystroke_btas_benchmark/1/proof6 | atvskeystroke/1@A | robertodaza/proof0/4 | ||||
robertodaza/aythamimm/atvs_keystroke_btas_benchmark/1/proof5 | atvskeystroke/1@A | robertodaza/proof0/3 | ||||
robertodaza/aythamimm/atvs_keystroke_btas_benchmark/1/proof4 | atvskeystroke/1@A | robertodaza/proof0/3 | ||||
robertodaza/aythamimm/atvs_keystroke_btas_benchmark/1/proof3-template_ids | atvskeystroke/1@A | robertodaza/proof0/2 | ||||
robertodaza/aythamimm/atvs_keystroke_btas_benchmark/1/proof0 | atvskeystroke/1@A | robertodaza/proof0/1 | ||||
aythamimm/aythamimm/atvs_keystroke_btas_benchmark/1/ATVS_keystroke_beckmark_btas2015 | atvskeystroke/1@A | aythamimm/keystroke_btas15_analyzer/1 |
This table shows the number of times this algorithm has been successfully run using the given environment. Note this does not provide sufficient information to evaluate if the algorithm will run when submitted to different conditions.