This algorithm is a legacy one. The API has changed since its implementation. New versions and forks will need to be updated.
This algorithm is splittable

Algorithms have at least one input and one output. All algorithm endpoints are organized in groups. Groups are used by the platform to indicate which inputs and outputs are synchronized together. The first group is automatically synchronized with the channel defined by the block in which the algorithm is deployed.

Group: main

Endpoint Name Data Format Nature
keystroke tutorial/atvs_keystroke/1 Input
template_id system/text/1 Input
keystroke_model aythamimm/keystroke_model/8 Output
xxxxxxxxxx
151
 
1
import numpy
2
3
def mad(lst):    
4
    if len(lst) < 1:
5
        return None
6
    if not(isinstance(lst[0], list)):        
7
        vec=[];
8
        m=numpy.median(lst);
9
        for i in range(len(lst)):
10
            vec.append(abs(lst[i]-m)); 
11
        return numpy.median(vec)
12
    else:
13
        mad_vec=[];
14
        for i in range(len(lst[0])):
15
            vec=[];            
16
            for j in range(len(lst)):
17
                vec.append(lst[j][i]); 
18
19
            m=numpy.mean(vec);            
20
            
21
            vec=[];            
22
            for j in range(len(lst)):
23
                vec.append(abs(lst[j][i]-m));
24
                
25
            mad_vec.append(numpy.mean(vec)+0.00001);
26
27
        return mad_vec
28
29
class Algorithm:
30
31
    def __init__(self):
32
        self._features1 = [] 
33
        self._features2 = [] 
34
        self._features3 = [] 
35
        self._features4 = [] 
36
        self._features5 = []   
37
    
38
    def process(self, inputs, outputs):
39
40
        # collect all the features for the current template
41
        data = inputs['keystroke'].data
42
        
43
        f1 = data.holdtime.given_name
44
        f2 = data.rplatency.given_name
45
        feature_vector=[]
46
        l_f=len(f1)
47
        for i_k in range(l_f):
48
            feature_vector.append(float(f1[i_k]))
49
        
50
        l_f=len(f2)
51
        for i_k in range(l_f):
52
            feature_vector.append(float(f2[i_k]))              
53
                
54
        self._features1.append(feature_vector)
55
                      
56
        f1 = data.holdtime.family_name
57
        f2 = data.rplatency.family_name
58
        feature_vector=[]
59
        l_f=len(f1)
60
        for i_k in range(l_f):
61
            feature_vector.append(float(f1[i_k]))
62
        
63
        l_f=len(f2)
64
        for i_k in range(l_f):
65
            feature_vector.append(float(f2[i_k]))              
66
                
67
        self._features2.append(feature_vector)
68
                
69
        f1 = data.holdtime.email
70
        f2 = data.rplatency.email
71
        feature_vector=[]
72
        l_f=len(f1)
73
        for i_k in range(l_f):
74
            feature_vector.append(float(f1[i_k]))
75
        
76
        l_f=len(f2)
77
        for i_k in range(l_f):
78
            feature_vector.append(float(f2[i_k]))              
79
                
80
        self._features3.append(feature_vector)
81
        
82
        f1 = data.holdtime.nationality
83
        f2 = data.rplatency.nationality 
84
        feature_vector=[]
85
        l_f=len(f1)
86
        for i_k in range(l_f):
87
            feature_vector.append(float(f1[i_k]))
88
        
89
        l_f=len(f2)
90
        for i_k in range(l_f):
91
            feature_vector.append(float(f2[i_k]))              
92
                
93
        self._features4.append(feature_vector)
94
        
95
        f1 = data.holdtime.id_number
96
        f2 = data.rplatency.id_number 
97
        feature_vector=[]
98
        l_f=len(f1)
99
        for i_k in range(l_f):
100
            feature_vector.append(float(f1[i_k]))
101
        
102
        l_f=len(f2)
103
        for i_k in range(l_f):
104
            feature_vector.append(float(f2[i_k]))              
105
                
106
        self._features5.append(feature_vector) 
107
                
108
        # Calculate mean and std
109
        if inputs["template_id"].isDataUnitDone():
110
            features11 = numpy.average(self._features1, axis=0)
111
            features12 = numpy.std(self._features1, axis=0)
112
            features13 = mad(self._features1)
113
            features21 = numpy.average(self._features2, axis=0)
114
            features22 = numpy.std(self._features2, axis=0)
115
            features23 = mad(self._features2)     
116
            features31 = numpy.average(self._features3, axis=0)
117
            features32 = numpy.std(self._features3, axis=0)
118
            features33 = mad(self._features3)
119
            features41 = numpy.average(self._features4, axis=0)
120
            features42 = numpy.std(self._features4, axis=0) 
121
            features43 = mad(self._features4) 
122
            features51 = numpy.average(self._features5, axis=0)
123
            features52 = numpy.std(self._features5, axis=0) 
124
            features53 = mad(self._features5) 
125
            # outputs data
126
            outputs["keystroke_model"].write({
127
                'given_name_average':       features11,
128
                'given_name_std':           features12,
129
                'given_name_mad':           features13,
130
                'family_name_average':      features21,
131
                'family_name_std':          features22,
132
                'family_name_mad':          features23,
133
                'email_average':            features31,
134
                'email_std':                features32,
135
                'email_mad':                features33,
136
                'nationality_average':      features41,
137
                'nationality_std':          features42,
138
                'nationality_mad':          features43,
139
                'id_number_average':        features51,
140
                'id_number_std':            features52,
141
                'id_number_mad':            features53,
142
            }) 
143
            
144
            self._features1 = []
145
            self._features2 = []
146
            self._features3 = []
147
            self._features4 = []
148
            self._features5 = []
149
150
        return True
151

The code for this algorithm in Python
The ruler at 80 columns indicate suggested POSIX line breaks (for readability).
The editor will automatically enlarge to accomodate the entirety of your input
Use keyboard shortcuts for search/replace and faster editing. For example, use Ctrl-F (PC) or Cmd-F (Mac) to search through this box

This algorithm is designed to be used as a simple enrollment strategy of keystroke data. It enrolls a model from several features by computing the average and standard deviation of the enrollment features.

Note

All features must have the same length.

Experiments

Updated Name Databases/Protocols Analyzers
robertodaza/aythamimm/atvs_keystroke_btas_benchmark/1/proof6 atvskeystroke/1@A robertodaza/proof0/4
robertodaza/aythamimm/atvs_keystroke_btas_benchmark/1/proof5 atvskeystroke/1@A robertodaza/proof0/3
robertodaza/aythamimm/atvs_keystroke_btas_benchmark/1/proof4 atvskeystroke/1@A robertodaza/proof0/3
robertodaza/aythamimm/atvs_keystroke_btas_benchmark/1/proof3-template_ids atvskeystroke/1@A robertodaza/proof0/2
robertodaza/aythamimm/atvs_keystroke_btas_benchmark/1/proof0 atvskeystroke/1@A robertodaza/proof0/1
aythamimm/aythamimm/atvs_keystroke_btas_benchmark/1/ATVS_keystroke_beckmark_btas2015 atvskeystroke/1@A aythamimm/keystroke_btas15_analyzer/1
Created with Raphaël 2.1.2[compare]aythamimm/keystroke_btas15_enroll/4robertodaza/competition-proof1/12015Sep14robertodaza/competition-proof1/2robertodaza/competition-proof1/4robertodaza/borrarahora/11robertodaza/borrarahora/142016Jan21

This table shows the number of times this algorithm has been successfully run using the given environment. Note this does not provide sufficient information to evaluate if the algorithm will run when submitted to different conditions.

Terms of Service | Contact Information | BEAT platform version 2.2.1b0 | © Idiap Research Institute - 2013-2025