This algorithm is a sequential one. The platform will call its process() method once per data incoming on its inputs.
This algorithm is splittable

Algorithms have at least one input and one output. All algorithm endpoints are organized in groups. Groups are used by the platform to indicate which inputs and outputs are synchronized together. The first group is automatically synchronized with the channel defined by the block in which the algorithm is deployed.

Group: group

Endpoint Name Data Format Nature
speech system/array_1d_floats/1 Input
features system/array_2d_floats/1 Output
xxxxxxxxxx
50
 
1
# You may import any python packages that will be available in the environment you will run this algorithm in
2
# Environments can change based on the experiment's settings
3
import sidekit
4
import numpy
5
6
7
class Algorithm:
8
    # initialise fields to store cross-input data (e.g. machines, aggregations, etc.)
9
    def __init__(self):
10
        self.fe = sidekit.FeaturesExtractor(
11
            audio_filename_structure="",
12
            feature_filename_structure=None,
13
            sampling_frequency=16000,
14
            lower_frequency=133.3333,
15
            higher_frequency=6855.4976,
16
            filter_bank="log",
17
            filter_bank_size=40,
18
            window_size=0.025,
19
            shift=0.01,
20
            ceps_number=13,
21
            pre_emphasis=0.97,
22
            keep_all_features=True,
23
            vad="percentil",
24
            save_param=["energy", "cep", "vad"],
25
        )
26
27
        self.fs = sidekit.FeaturesServer(
28
            feature_filename_structure="",
29
            dataset_list=("cep"),
30
            delta=False,
31
            double_delta=False,
32
            keep_all_features=True,
33
        )
34
35
    # this will be called each time the sync'd input has more data available to be processed
36
    def process(self, inputs, dataloader, outputs):
37
        speech = inputs["speech"].data.value
38
        label, energy, cep, _ = self.fe.extract_from_signal(speech, 16000)
39
        # Concatenate energy and cep
40
        feat = numpy.hstack([energy[:, None], cep])
41
        # Add dynamic features
42
        feat = self.fs._delta_and_2delta(feat)
43
        # Smooth the labels
44
        label = sidekit.frontend.vad.label_fusion(label)
45
46
        outputs["features"].write({"value": feat})
47
48
        # always return True, it signals BEAT to continue processing
49
        return True
50

The code for this algorithm in Python
The ruler at 80 columns indicate suggested POSIX line breaks (for readability).
The editor will automatically enlarge to accomodate the entirety of your input
Use keyboard shortcuts for search/replace and faster editing. For example, use Ctrl-F (PC) or Cmd-F (Mac) to search through this box

Could not find any documentation for this object.
No experiments are using this algorithm.
Created with Raphaël 2.1.2[compare]anthony_larcher/features_extractor/12020Mar9

This table shows the number of times this algorithm has been successfully run using the given environment. Note this does not provide sufficient information to evaluate if the algorithm will run when submitted to different conditions.

Terms of Service | Contact Information | BEAT platform version 2.2.1b0 | © Idiap Research Institute - 2013-2025