Collate multiple DER into one score

This algorithm is a sequential one. The platform will call its process() method once per data incoming on its inputs.
This algorithm is an analyzer. It can only be used on analysis blocks.

Algorithms have at least one input and one output. All algorithm endpoints are organized in groups. Groups are used by the platform to indicate which inputs and outputs are synchronized together. The first group is automatically synchronized with the channel defined by the block in which the algorithm is deployed.

Group: group0

Endpoint Name Data Format Nature
DER system/float/1 Input
file_info anthony_larcher/file_info_sd/1 Input
speech_duration system/float/1 Input

Analyzers may produce any number of results. Once experiments using this analyzer are done, you may display the results or filter experiments using criteria based on them.

Name Type
DER float32
xxxxxxxxxx
58
 
1
# You may import any python packages that will be available in the environment you will run this algorithm in
2
# Environments can change based on the experiment's settings
3
4
import numpy as np
5
6
7
class Algorithm:
8
    # initialise fields to store cross-input data (e.g. machines, aggregations, etc.)
9
    def __init__(self):
10
        self.total_der = 0.0
11
        self.total_time = 0.0
12
13
    # this will be called each time the sync'd input has more data available to be processed
14
    def process(self, inputs, dataloader, output):
15
        # Groups available:
16
        # Group 0:
17
        #   Input "DER" with type  "system/float/1"
18
        #   Input "speech_duration" with type  "system/float/1"
19
        #   Input "file_info" with type  "allies/file_info/1"
20
21
        # Results available:
22
        #   Result "DER" with type "float32"
23
24
        # to check if there is more data waiting in the inputs
25
        # (if it is False, you have processed all the inputs and this "process" function won't be called again):
26
        #       if inputs.hasMoreData():
27
28
        # to check if a specific input is done:
29
        #       if inputs["input1"].isDataUnitDone():
30
31
        # to manually fetch the next input of a specific input
32
        # (e.g. the block is not sync'd to the input but you want the input immediately)
33
        #       inputs['input1'].next()
34
        # you can then access that input value as normal:
35
        #       self.val1 = inputs['input1'].data
36
37
        # to get the data for an input (note that the value will be of the type specified in the metadata!):
38
        #       data_value = inputs['input1'].data
39
40
        # to write to an output:
41
        #       outputs['output1'].write({
42
        #           'output_field_1': 1,
43
        #           'output_field_2': 'output'
44
        #       })
45
46
        # always return True, it signals BEAT to continue processing
47
        fi =  inputs["file_info"].data.file_id
48
        sup = inputs["file_info"].data.supervision
49
        print("file {}: DER = {}, supervision: {}".format(fi, inputs["DER"].data.value, sup))
50
        tm = inputs["speech_duration"].data.value
51
        self.total_time += tm
52
        self.total_der += tm * inputs["DER"].data.value
53
54
        if not inputs.hasMoreData():
55
            output.write({"DER": np.cast["float32"](self.total_der/self.total_time)})
56
57
        return True
58

The code for this algorithm in Python
The ruler at 80 columns indicate suggested POSIX line breaks (for readability).
The editor will automatically enlarge to accomodate the entirety of your input
Use keyboard shortcuts for search/replace and faster editing. For example, use Ctrl-F (PC) or Cmd-F (Mac) to search through this box

Could not find any documentation for this object.
No experiments are using this algorithm.
Created with Raphaël 2.1.2[compare]anthony_larcher/DER_collate/12020Mar9

This table shows the number of times this algorithm has been successfully run using the given environment. Note this does not provide sufficient information to evaluate if the algorithm will run when submitted to different conditions.

Terms of Service | Contact Information | BEAT platform version 2.2.1b0 | © Idiap Research Institute - 2013-2025