Trains a multinomial logistic regression model

This algorithm is a sequential one. The platform will call its process() method once per data incoming on its inputs.

Algorithms have at least one input and one output. All algorithm endpoints are organized in groups. Groups are used by the platform to indicate which inputs and outputs are synchronized together. The first group is automatically synchronized with the channel defined by the block in which the algorithm is deployed.

Group: main

Endpoint Name Data Format Nature
image system/array_2d_uint8/1 Input
label system/uint64/1 Input
model system/text/1 Output
xxxxxxxxxx
42
 
1
import pickle
2
import base64
3
from sklearn.preprocessing import StandardScaler
4
from sklearn.linear_model import LogisticRegression
5
from sklearn.pipeline import make_pipeline
6
from sklearn.utils import check_array
7
8
def reshape(X):
9
    X = check_array(X, allow_nd=True)
10
    return X.reshape((X.shape[0], -1))
11
12
13
class Algorithm:
14
    def __init__(self):
15
        self.images = []
16
        self.labels = []
17
        self.estimator = make_pipeline(
18
            StandardScaler(),
19
            LogisticRegression(
20
                C=50. / 60000, penalty='l1', solver='saga', tol=0.1
21
            ),
22
        )
23
24
    def process(self, inputs, data_loaders, outputs):
25
        # accumulate images and labels
26
        self.images.append(inputs["image"].data.value)
27
        self.labels.append(inputs["label"].data.value)
28
29
        if not (inputs["image"].hasMoreData()):
30
            # train the estimator when all data is accumulated
31
            X = reshape(self.images)
32
            self.estimator.fit(X, self.labels)
33
            # pickle and output estimator
34
            out = pickle.dumps(self.estimator)
35
            # stringify the output since BEAT does not yet support byte type as output
36
            out = base64.b64encode(out).decode("ascii")
37
            outputs["model"].write({"text": out})
38
            self.images = []
39
            self.labels = []
40
41
        return True
42

The code for this algorithm in Python
The ruler at 80 columns indicate suggested POSIX line breaks (for readability).
The editor will automatically enlarge to accomodate the entirety of your input
Use keyboard shortcuts for search/replace and faster editing. For example, use Ctrl-F (PC) or Cmd-F (Mac) to search through this box

Could not find any documentation for this object.

Experiments

Updated Name Databases/Protocols Analyzers
amohammadi/amohammadi/mnist_simple/1/mnist1 mnist/5@idiap amohammadi/accuracy_analyzer/1
Created with Raphaël 2.1.2[compare]amohammadi/mnist_trainer/12021Jan28

This table shows the number of times this algorithm has been successfully run using the given environment. Note this does not provide sufficient information to evaluate if the algorithm will run when submitted to different conditions.

Terms of Service | Contact Information | BEAT platform version 2.2.1b0 | © Idiap Research Institute - 2013-2025