Rescaling of a grayscale image
Algorithms have at least one input and one output. All algorithm endpoints are organized in groups. Groups are used by the platform to indicate which inputs and outputs are synchronized together. The first group is automatically synchronized with the channel defined by the block in which the algorithm is deployed.
Endpoint Name | Data Format | Nature |
---|---|---|
image | system/array_2d_uint8/1 | Input |
scaled_image | system/array_2d_uint8/1 | Output |
Parameters allow users to change the configuration of an algorithm when scheduling an experiment
Name | Description | Type | Default | Range/Choices |
---|---|---|---|---|
width | Width of the scaled image | uint32 | 200 | |
height | Height of the scaled image | uint32 | 100 |
xxxxxxxxxx
import bob.ip.base
import numpy
class Algorithm:
def setup(self, parameters):
self.dst_width = parameters.get('width', 200)
self.dst_height = parameters.get('height', 100)
return True
def process(self, inputs, outputs):
src_image = inputs["image"].data.value
dst_image = numpy.ndarray((self.dst_height, self.dst_width), dtype=numpy.float64)
bob.ip.base.scale(src_image, dst_image)
outputs["scaled_image"].write({
'value': dst_image.astype(numpy.uint8)
})
return True
The code for this algorithm in Python
The ruler at 80 columns indicate suggested POSIX line breaks (for readability).
The editor will automatically enlarge to accomodate the entirety of your input
Use keyboard shortcuts for search/replace and faster editing. For example, use Ctrl-F (PC) or Cmd-F (Mac) to search through this box
COMPATIBLE WITH Bob 2.x, available in the environment Scientific Python 2.7 (0.1.0)