bob.learn.libsvm
2.1.1
Support Vector Machines and Trainers
Python API
C++ API
bob.learn.libsvm
Docs
»
Index
Index
B
|
C
|
D
|
E
|
F
|
G
|
I
|
K
|
L
|
M
|
N
|
P
|
R
|
S
|
T
B
bob.learn.libsvm (module)
bob::learn::libsvm::File (C++ class)
bob::learn::libsvm::File::eof (C++ function)
bob::learn::libsvm::File::fail (C++ function)
bob::learn::libsvm::File::File (C++ function)
bob::learn::libsvm::File::filename (C++ function)
bob::learn::libsvm::File::good (C++ function)
bob::learn::libsvm::File::read (C++ function)
bob::learn::libsvm::File::read_ (C++ function)
bob::learn::libsvm::File::reset (C++ function)
bob::learn::libsvm::File::samples (C++ function)
bob::learn::libsvm::File::shape (C++ function)
bob::learn::libsvm::File::~File (C++ function)
bob::learn::libsvm::kernel_t (C++ type)
bob::learn::libsvm::Machine (C++ class)
bob::learn::libsvm::Machine::classLabel (C++ function)
bob::learn::libsvm::Machine::coefficient0 (C++ function)
bob::learn::libsvm::Machine::gamma (C++ function)
bob::learn::libsvm::Machine::getInputDivision (C++ function)
bob::learn::libsvm::Machine::getInputSubtraction (C++ function)
bob::learn::libsvm::Machine::inputSize (C++ function)
bob::learn::libsvm::Machine::kernelType (C++ function)
bob::learn::libsvm::Machine::Machine (C++ function)
,
[1]
,
[2]
bob::learn::libsvm::Machine::machineType (C++ function)
bob::learn::libsvm::Machine::numberOfClasses (C++ function)
bob::learn::libsvm::Machine::outputSize (C++ function)
bob::learn::libsvm::Machine::polynomialDegree (C++ function)
bob::learn::libsvm::Machine::predictClass (C++ function)
bob::learn::libsvm::Machine::predictClass_ (C++ function)
bob::learn::libsvm::Machine::predictClassAndProbabilities (C++ function)
bob::learn::libsvm::Machine::predictClassAndProbabilities_ (C++ function)
bob::learn::libsvm::Machine::predictClassAndScores (C++ function)
bob::learn::libsvm::Machine::predictClassAndScores_ (C++ function)
bob::learn::libsvm::Machine::save (C++ function)
,
[1]
bob::learn::libsvm::Machine::setInputDivision (C++ function)
,
[1]
bob::learn::libsvm::Machine::setInputSubtraction (C++ function)
,
[1]
bob::learn::libsvm::Machine::supportsProbability (C++ function)
bob::learn::libsvm::Machine::~Machine (C++ function)
bob::learn::libsvm::machine_t (C++ type)
bob::learn::libsvm::Trainer (C++ class)
bob::learn::libsvm::Trainer::getCacheSizeInMb (C++ function)
bob::learn::libsvm::Trainer::getCoef0 (C++ function)
bob::learn::libsvm::Trainer::getCost (C++ function)
bob::learn::libsvm::Trainer::getDegree (C++ function)
bob::learn::libsvm::Trainer::getGamma (C++ function)
bob::learn::libsvm::Trainer::getKernelType (C++ function)
bob::learn::libsvm::Trainer::getLossEpsilonSVR (C++ function)
bob::learn::libsvm::Trainer::getMachineType (C++ function)
bob::learn::libsvm::Trainer::getNu (C++ function)
bob::learn::libsvm::Trainer::getProbabilityEstimates (C++ function)
bob::learn::libsvm::Trainer::getStopEpsilon (C++ function)
bob::learn::libsvm::Trainer::getUseShrinking (C++ function)
bob::learn::libsvm::Trainer::setCacheSizeInMb (C++ function)
bob::learn::libsvm::Trainer::setCoef0 (C++ function)
bob::learn::libsvm::Trainer::setCost (C++ function)
bob::learn::libsvm::Trainer::setDegree (C++ function)
bob::learn::libsvm::Trainer::setGamma (C++ function)
bob::learn::libsvm::Trainer::setKernelType (C++ function)
bob::learn::libsvm::Trainer::setLossEpsilonSVR (C++ function)
bob::learn::libsvm::Trainer::setMachineType (C++ function)
bob::learn::libsvm::Trainer::setNu (C++ function)
bob::learn::libsvm::Trainer::setProbabilityEstimates (C++ function)
bob::learn::libsvm::Trainer::setStopEpsilon (C++ function)
bob::learn::libsvm::Trainer::setUseShrinking (C++ function)
bob::learn::libsvm::Trainer::train (C++ function)
,
[1]
bob::learn::libsvm::Trainer::Trainer (C++ function)
bob::learn::libsvm::Trainer::~Trainer (C++ function)
C
cache_size (bob.learn.libsvm.Trainer attribute)
coef0 (bob.learn.libsvm.Machine attribute)
(bob.learn.libsvm.Trainer attribute)
cost (bob.learn.libsvm.Trainer attribute)
D
degree (bob.learn.libsvm.Machine attribute)
(bob.learn.libsvm.Trainer attribute)
E
eof() (bob.learn.libsvm.File method)
F
fail() (bob.learn.libsvm.File method)
File (class in bob.learn.libsvm)
filename (bob.learn.libsvm.File attribute)
forward() (bob.learn.libsvm.Machine method)
G
gamma (bob.learn.libsvm.Machine attribute)
(bob.learn.libsvm.Trainer attribute)
get_config() (in module bob.learn.libsvm)
good() (bob.learn.libsvm.File method)
I
input_divide (bob.learn.libsvm.Machine attribute)
input_subtract (bob.learn.libsvm.Machine attribute)
K
kernel_type (bob.learn.libsvm.Machine attribute)
(bob.learn.libsvm.Trainer attribute)
L
labels (bob.learn.libsvm.Machine attribute)
loss_epsilon_svr (bob.learn.libsvm.Trainer attribute)
M
Machine (class in bob.learn.libsvm)
machine_type (bob.learn.libsvm.Machine attribute)
(bob.learn.libsvm.Trainer attribute)
N
n_support_vectors (bob.learn.libsvm.Machine attribute)
nu (bob.learn.libsvm.Trainer attribute)
P
predict_class() (bob.learn.libsvm.Machine method)
predict_class_and_probabilities() (bob.learn.libsvm.Machine method)
predict_class_and_scores() (bob.learn.libsvm.Machine method)
probability (bob.learn.libsvm.Machine attribute)
(bob.learn.libsvm.Trainer attribute)
PyBobLearnLibsvm_CStringAsKernelType (C++ function)
PyBobLearnLibsvm_CStringAsMachineType (C++ function)
PyBobLearnLibsvm_KernelTypeAsString (C++ function)
PyBobLearnLibsvm_MachineTypeAsString (C++ function)
PyBobLearnLibsvm_StringAsKernelType (C++ function)
PyBobLearnLibsvm_StringAsMachineType (C++ function)
PyBobLearnLibsvmFile_Check (C++ function)
PyBobLearnLibsvmFileObject (C++ type)
PyBobLearnLibsvmFileObject::cxx (C++ member)
PyBobLearnLibsvmMachine_Check (C++ function)
PyBobLearnLibsvmMachine_NewFromMachine (C++ function)
PyBobLearnLibsvmMachineObject (C++ type)
PyBobLearnLibsvmMachineObject::cxx (C++ member)
PyBobLearnLibsvmTrainer_Check (C++ function)
PyBobLearnLibsvmTrainerObject (C++ type)
PyBobLearnLibsvmTrainerObject::cxx (C++ member)
R
read() (bob.learn.libsvm.File method)
read_all() (bob.learn.libsvm.File method)
reset() (bob.learn.libsvm.File method)
S
samples (bob.learn.libsvm.File attribute)
save() (bob.learn.libsvm.Machine method)
shape (bob.learn.libsvm.File attribute)
(bob.learn.libsvm.Machine attribute)
shrinking (bob.learn.libsvm.Trainer attribute)
stop_epsilon (bob.learn.libsvm.Trainer attribute)
T
train() (bob.learn.libsvm.Trainer method)
Trainer (class in bob.learn.libsvm)