bob.learn.em
3.0.1
User guide
Python API
bob.learn.em
»
Index
Index
A
|
B
|
C
|
E
|
F
|
G
|
I
|
J
|
K
|
L
|
M
|
N
|
P
|
R
|
S
|
T
|
V
|
W
A
acc_stats() (bob.learn.em.GMMMachine method)
B
bob.learn.em
module
C
centroids_ (bob.learn.em.KMeansMachine attribute)
E
e_step() (bob.learn.em.ISVMachine method)
e_step_d() (bob.learn.em.JFAMachine method)
e_step_u() (bob.learn.em.JFAMachine method)
e_step_v() (bob.learn.em.JFAMachine method)
enroll() (bob.learn.em.ISVMachine method)
(bob.learn.em.JFAMachine method)
enroll_using_array() (bob.learn.em.ISVMachine method)
F
finalize_u() (bob.learn.em.JFAMachine method)
finalize_v() (bob.learn.em.JFAMachine method)
fit() (bob.learn.em.GMMMachine method)
(bob.learn.em.ISVMachine method)
(bob.learn.em.JFAMachine method)
(bob.learn.em.KMeansMachine method)
(bob.learn.em.WCCN method)
(bob.learn.em.Whitening method)
from_hdf5() (bob.learn.em.GMMMachine class method)
(bob.learn.em.GMMStats class method)
G
g_norms (bob.learn.em.GMMMachine property)
get_config() (in module bob.learn.em)
get_variances_and_weights_for_each_cluster() (bob.learn.em.KMeansMachine method)
GMMMachine (class in bob.learn.em)
GMMStats (class in bob.learn.em)
I
init_fields() (bob.learn.em.GMMStats method)
initialize() (bob.learn.em.KMeansMachine method)
initialize_gaussians() (bob.learn.em.GMMMachine method)
is_similar_to() (bob.learn.em.GMMMachine method)
(bob.learn.em.GMMStats method)
(bob.learn.em.KMeansMachine method)
ISVMachine (class in bob.learn.em)
J
JFAMachine (class in bob.learn.em)
K
KMeansMachine (class in bob.learn.em)
L
linear_scoring() (in module bob.learn.em)
load() (bob.learn.em.GMMMachine method)
(bob.learn.em.GMMStats method)
log_likelihood (bob.learn.em.GMMStats attribute)
log_likelihood() (bob.learn.em.GMMMachine method)
log_weighted_likelihood() (bob.learn.em.GMMMachine method)
log_weights (bob.learn.em.GMMMachine property)
M
m_step() (bob.learn.em.ISVMachine method)
m_step_d() (bob.learn.em.JFAMachine method)
m_step_u() (bob.learn.em.JFAMachine method)
m_step_v() (bob.learn.em.JFAMachine method)
means (bob.learn.em.GMMMachine property)
(bob.learn.em.KMeansMachine property)
module
bob.learn.em
N
n (bob.learn.em.GMMStats attribute)
nbytes (bob.learn.em.GMMStats property)
P
predict() (bob.learn.em.KMeansMachine method)
R
reset() (bob.learn.em.GMMStats method)
resize() (bob.learn.em.GMMStats method)
S
save() (bob.learn.em.GMMMachine method)
(bob.learn.em.GMMStats method)
score() (bob.learn.em.ISVMachine method)
(bob.learn.em.JFAMachine method)
shape (bob.learn.em.GMMMachine property)
(bob.learn.em.GMMStats property)
stats_per_sample() (bob.learn.em.GMMMachine method)
sum_px (bob.learn.em.GMMStats attribute)
sum_pxx (bob.learn.em.GMMStats attribute)
T
t (bob.learn.em.GMMStats attribute)
transform() (bob.learn.em.GMMMachine method)
(bob.learn.em.ISVMachine method)
(bob.learn.em.KMeansMachine method)
(bob.learn.em.WCCN method)
(bob.learn.em.Whitening method)
V
variance_thresholds (bob.learn.em.GMMMachine property)
variances (bob.learn.em.GMMMachine property)
W
WCCN (class in bob.learn.em)
weights (bob.learn.em.GMMMachine property)
Whitening (class in bob.learn.em)