Expectation Maximization Machine Learning Tools¶
This package is a part of Bob. It implements a general EM algorithm and includes implementations of the following algorithms:
K-Means
Maximum Likelihood (ML)
Maximum a Posteriori (MAP)
Inter Session Variability Modelling (ISV)
Joint Factor Analysis (JFA)
Total Variability Modeling (iVectors)
Probabilistic Linear Discriminant Analysis (PLDA)
EM Principal Component Analysis (EM-PCA)
Documentation¶
References¶
- Reynolds2000
Reynolds, Douglas A., Thomas F. Quatieri, and Robert B. Dunn. Speaker Verification Using Adapted Gaussian Mixture Models, Digital signal processing 10.1 (2000): 19-41.
- Vogt2008
R. Vogt, S. Sridharan. ‘Explicit Modelling of Session Variability for Speaker Verification’, Computer Speech & Language, 2008, vol. 22, no. 1, pp. 17-38
- McCool2013
C. McCool, R. Wallace, M. McLaren, L. El Shafey, S. Marcel. ‘Session Variability Modelling for Face Authentication’, IET Biometrics, 2013
- ElShafey2014
Laurent El Shafey, Chris McCool, Roy Wallace, Sebastien Marcel. ‘A Scalable Formulation of Probabilistic Linear Discriminant Analysis: Applied to Face Recognition’, TPAMI’2014
- PrinceElder2007
Prince and Elder. ‘Probabilistic Linear Discriminant Analysis for Inference About Identity’, ICCV’2007
- LiFu2012
Li, Fu, Mohammed, Elder and Prince. ‘Probabilistic Models for Inference about Identity’, TPAMI’2012
- Bishop1999
Tipping, Michael E., and Christopher M. Bishop. “Probabilistic principal component analysis.” Journal of the Royal Statistical Society: Series B (Statistical Methodology) 61.3 (1999): 611-622.
- Roweis1998
Roweis, Sam. “EM algorithms for PCA and SPCA.” Advances in neural information processing systems (1998): 626-632.
- Glembek2009
Glembek, Ondrej, et al. “Comparison of scoring methods used in speaker recognition with joint factor analysis.” Acoustics, Speech and Signal Processing, 2009. ICASSP 2009. IEEE International Conference on. IEEE, 2009.