bob.learn.em
2.1.6
User guide
Python API
bob.learn.em
Docs
»
Index
Index
A
|
B
|
C
|
D
|
E
|
F
|
G
|
H
|
I
|
J
|
K
|
L
|
M
|
N
|
P
|
R
|
S
|
T
|
U
|
V
|
W
|
X
|
Y
|
Z
A
acc_d_a1 (bob.learn.em.JFATrainer attribute)
acc_d_a2 (bob.learn.em.JFATrainer attribute)
acc_fnormij_wij (bob.learn.em.IVectorTrainer attribute)
acc_nij (bob.learn.em.IVectorTrainer attribute)
acc_nij_wij2 (bob.learn.em.IVectorTrainer attribute)
acc_snormij (bob.learn.em.IVectorTrainer attribute)
acc_statistics() (bob.learn.em.GMMMachine method)
acc_statistics_() (bob.learn.em.GMMMachine method)
acc_u_a1 (bob.learn.em.ISVTrainer attribute)
(bob.learn.em.JFATrainer attribute)
acc_u_a2 (bob.learn.em.ISVTrainer attribute)
(bob.learn.em.JFATrainer attribute)
acc_v_a1 (bob.learn.em.JFATrainer attribute)
acc_v_a2 (bob.learn.em.JFATrainer attribute)
alpha (bob.learn.em.MAP_GMMTrainer attribute)
average_min_distance (bob.learn.em.KMeansTrainer attribute)
B
bob.learn.em (module)
C
clear_maps() (bob.learn.em.PLDABase method)
(bob.learn.em.PLDAMachine method)
compute_gamma() (bob.learn.em.PLDABase method)
compute_likelihood() (bob.learn.em.EMPCATrainer method)
(bob.learn.em.KMeansTrainer method)
(bob.learn.em.MAP_GMMTrainer method)
(bob.learn.em.ML_GMMTrainer method)
compute_log_like_const_term() (bob.learn.em.PLDABase method)
compute_log_likelihood() (bob.learn.em.PLDAMachine method)
compute_log_likelihood_point_estimate() (bob.learn.em.PLDABase method)
D
d (bob.learn.em.ISVBase attribute)
(bob.learn.em.JFABase attribute)
E
e_step() (bob.learn.em.EMPCATrainer method)
(bob.learn.em.ISVTrainer method)
(bob.learn.em.IVectorTrainer method)
(bob.learn.em.KMeansTrainer method)
(bob.learn.em.MAP_GMMTrainer method)
(bob.learn.em.ML_GMMTrainer method)
(bob.learn.em.PLDATrainer method)
e_step_d() (bob.learn.em.JFATrainer method)
e_step_u() (bob.learn.em.JFATrainer method)
e_step_v() (bob.learn.em.JFATrainer method)
EMPCATrainer (class in bob.learn.em)
enroll() (bob.learn.em.ISVTrainer method)
(bob.learn.em.JFATrainer method)
(bob.learn.em.PLDATrainer method)
estimate_ux() (bob.learn.em.ISVMachine method)
(bob.learn.em.JFAMachine method)
estimate_x() (bob.learn.em.ISVMachine method)
(bob.learn.em.JFAMachine method)
F
f (bob.learn.em.PLDABase attribute)
finalize() (bob.learn.em.PLDATrainer method)
finalize_d() (bob.learn.em.JFATrainer method)
finalize_u() (bob.learn.em.JFATrainer method)
finalize_v() (bob.learn.em.JFATrainer method)
first_order_statistics (bob.learn.em.KMeansTrainer attribute)
forward_ux() (bob.learn.em.ISVMachine method)
(bob.learn.em.JFAMachine method)
G
g (bob.learn.em.PLDABase attribute)
Gaussian (class in bob.learn.em)
get_add_gamma() (bob.learn.em.PLDABase method)
(bob.learn.em.PLDAMachine method)
get_add_log_like_const_term() (bob.learn.em.PLDABase method)
(bob.learn.em.PLDAMachine method)
get_closest_mean() (bob.learn.em.KMeansMachine method)
get_config() (in module bob.learn.em)
get_distance_from_mean() (bob.learn.em.KMeansMachine method)
get_gamma() (bob.learn.em.PLDABase method)
(bob.learn.em.PLDAMachine method)
get_gaussian() (bob.learn.em.GMMMachine method)
get_log_like_const_term() (bob.learn.em.PLDABase method)
(bob.learn.em.PLDAMachine method)
get_mean() (bob.learn.em.KMeansMachine method)
get_min_distance() (bob.learn.em.KMeansMachine method)
get_variances_and_weights_for_each_cluster() (bob.learn.em.KMeansMachine method)
gmm_statistics (bob.learn.em.MAP_GMMTrainer attribute)
(bob.learn.em.ML_GMMTrainer attribute)
GMMMachine (class in bob.learn.em)
GMMStats (class in bob.learn.em)
H
has_gamma() (bob.learn.em.PLDABase method)
(bob.learn.em.PLDAMachine method)
has_log_like_const_term() (bob.learn.em.PLDABase method)
(bob.learn.em.PLDAMachine method)
I
init() (bob.learn.em.GMMStats method)
init_f_method (bob.learn.em.PLDATrainer attribute)
init_g_method (bob.learn.em.PLDATrainer attribute)
init_sigma_method (bob.learn.em.PLDATrainer attribute)
initialization_method (bob.learn.em.KMeansTrainer attribute)
initialize() (bob.learn.em.EMPCATrainer method)
(bob.learn.em.ISVTrainer method)
(bob.learn.em.IVectorTrainer method)
(bob.learn.em.JFATrainer method)
(bob.learn.em.KMeansTrainer method)
(bob.learn.em.MAP_GMMTrainer method)
(bob.learn.em.ML_GMMTrainer method)
(bob.learn.em.PLDATrainer method)
is_similar_to() (bob.learn.em.Gaussian method)
(bob.learn.em.GMMMachine method)
(bob.learn.em.GMMStats method)
(bob.learn.em.ISVBase method)
(bob.learn.em.ISVMachine method)
(bob.learn.em.IVectorMachine method)
(bob.learn.em.JFABase method)
(bob.learn.em.JFAMachine method)
(bob.learn.em.KMeansMachine method)
(bob.learn.em.PLDABase method)
(bob.learn.em.PLDAMachine method)
(bob.learn.em.PLDATrainer method)
isv_base (bob.learn.em.ISVMachine attribute)
ISVBase (class in bob.learn.em)
ISVMachine (class in bob.learn.em)
ISVTrainer (class in bob.learn.em)
IVectorMachine (class in bob.learn.em)
IVectorTrainer (class in bob.learn.em)
J
jfa_base (bob.learn.em.JFAMachine attribute)
JFABase (class in bob.learn.em)
JFAMachine (class in bob.learn.em)
JFATrainer (class in bob.learn.em)
K
KMeansMachine (class in bob.learn.em)
KMeansTrainer (class in bob.learn.em)
L
linear_scoring() (in module bob.learn.em)
load() (bob.learn.em.Gaussian method)
(bob.learn.em.GMMMachine method)
(bob.learn.em.GMMStats method)
(bob.learn.em.ISVBase method)
(bob.learn.em.ISVMachine method)
(bob.learn.em.IVectorMachine method)
(bob.learn.em.JFABase method)
(bob.learn.em.JFAMachine method)
(bob.learn.em.KMeansMachine method)
(bob.learn.em.PLDABase method)
(bob.learn.em.PLDAMachine method)
log_likelihood (bob.learn.em.GMMStats attribute)
(bob.learn.em.PLDAMachine attribute)
log_likelihood() (bob.learn.em.Gaussian method)
(bob.learn.em.GMMMachine method)
(bob.learn.em.JFAMachine method)
log_likelihood_() (bob.learn.em.Gaussian method)
(bob.learn.em.GMMMachine method)
log_likelihood_ratio() (bob.learn.em.PLDAMachine method)
M
m_step() (bob.learn.em.EMPCATrainer method)
(bob.learn.em.ISVTrainer method)
(bob.learn.em.IVectorTrainer method)
(bob.learn.em.KMeansTrainer method)
(bob.learn.em.MAP_GMMTrainer method)
(bob.learn.em.ML_GMMTrainer method)
(bob.learn.em.PLDATrainer method)
m_step_d() (bob.learn.em.JFATrainer method)
m_step_u() (bob.learn.em.JFATrainer method)
m_step_v() (bob.learn.em.JFATrainer method)
MAP_GMMTrainer (class in bob.learn.em)
mean (bob.learn.em.Gaussian attribute)
mean_supervector (bob.learn.em.GMMMachine attribute)
means (bob.learn.em.GMMMachine attribute)
(bob.learn.em.KMeansMachine attribute)
ML_GMMTrainer (class in bob.learn.em)
mu (bob.learn.em.PLDABase attribute)
N
n (bob.learn.em.GMMStats attribute)
n_samples (bob.learn.em.PLDAMachine attribute)
P
plda_base (bob.learn.em.PLDAMachine attribute)
PLDABase (class in bob.learn.em)
PLDAMachine (class in bob.learn.em)
PLDATrainer (class in bob.learn.em)
Process() (bob.learn.em.ThreadPool static method)
project() (bob.learn.em.IVectorMachine method)
R
relevance_factor (bob.learn.em.MAP_GMMTrainer attribute)
reset_accumulators() (bob.learn.em.IVectorTrainer method)
(bob.learn.em.KMeansTrainer method)
resize() (bob.learn.em.Gaussian method)
(bob.learn.em.GMMMachine method)
(bob.learn.em.GMMStats method)
(bob.learn.em.ISVBase method)
(bob.learn.em.IVectorMachine method)
(bob.learn.em.JFABase method)
(bob.learn.em.KMeansMachine method)
(bob.learn.em.PLDABase method)
S
save() (bob.learn.em.Gaussian method)
(bob.learn.em.GMMMachine method)
(bob.learn.em.GMMStats method)
(bob.learn.em.ISVBase method)
(bob.learn.em.ISVMachine method)
(bob.learn.em.IVectorMachine method)
(bob.learn.em.JFABase method)
(bob.learn.em.JFAMachine method)
(bob.learn.em.KMeansMachine method)
(bob.learn.em.PLDABase method)
(bob.learn.em.PLDAMachine method)
set_mean() (bob.learn.em.KMeansMachine method)
set_variance_thresholds() (bob.learn.em.Gaussian method)
(bob.learn.em.GMMMachine method)
shape (bob.learn.em.Gaussian attribute)
(bob.learn.em.GMMMachine attribute)
(bob.learn.em.GMMStats attribute)
(bob.learn.em.ISVBase attribute)
(bob.learn.em.ISVMachine attribute)
(bob.learn.em.IVectorMachine attribute)
(bob.learn.em.JFABase attribute)
(bob.learn.em.JFAMachine attribute)
(bob.learn.em.KMeansMachine attribute)
(bob.learn.em.PLDABase attribute)
(bob.learn.em.PLDAMachine attribute)
sigma (bob.learn.em.IVectorMachine attribute)
(bob.learn.em.PLDABase attribute)
sigma2 (bob.learn.em.EMPCATrainer attribute)
sum_px (bob.learn.em.GMMStats attribute)
sum_pxx (bob.learn.em.GMMStats attribute)
supervector_length (bob.learn.em.ISVBase attribute)
(bob.learn.em.ISVMachine attribute)
(bob.learn.em.IVectorMachine attribute)
(bob.learn.em.JFABase attribute)
(bob.learn.em.JFAMachine attribute)
T
t (bob.learn.em.GMMStats attribute)
(bob.learn.em.IVectorMachine attribute)
ThreadPool (class in bob.learn.em)
tnorm() (in module bob.learn.em)
train() (in module bob.learn.em)
train_jfa() (in module bob.learn.em)
U
u (bob.learn.em.ISVBase attribute)
(bob.learn.em.JFABase attribute)
ubm (bob.learn.em.ISVBase attribute)
(bob.learn.em.IVectorMachine attribute)
(bob.learn.em.JFABase attribute)
use_sum_second_order (bob.learn.em.PLDATrainer attribute)
V
v (bob.learn.em.JFABase attribute)
variance (bob.learn.em.Gaussian attribute)
variance_supervector (bob.learn.em.GMMMachine attribute)
variance_threshold (bob.learn.em.IVectorMachine attribute)
(bob.learn.em.PLDABase attribute)
variance_thresholds (bob.learn.em.Gaussian attribute)
(bob.learn.em.GMMMachine attribute)
variances (bob.learn.em.GMMMachine attribute)
W
w_sum_xit_beta_xi (bob.learn.em.PLDAMachine attribute)
weighted_sum (bob.learn.em.PLDAMachine attribute)
weights (bob.learn.em.GMMMachine attribute)
X
x (bob.learn.em.ISVMachine attribute)
(bob.learn.em.JFAMachine attribute)
Y
y (bob.learn.em.JFAMachine attribute)
Z
z (bob.learn.em.ISVMachine attribute)
(bob.learn.em.JFAMachine attribute)
z_first_order (bob.learn.em.PLDATrainer attribute)
z_second_order (bob.learn.em.PLDATrainer attribute)
z_second_order_sum (bob.learn.em.PLDATrainer attribute)
zeroeth_order_statistics (bob.learn.em.KMeansTrainer attribute)
znorm() (in module bob.learn.em)
ztnorm() (in module bob.learn.em)
ztnorm_same_value() (in module bob.learn.em)