.. py:currentmodule:: bob.kaldi .. testsetup:: * from __future__ import print_function import pkg_resources import bob.kaldi import bob.io.audio import tempfile import numpy ================================ Voice Activity Detection (VAD) ================================ Energy-based ------------ A simple energy-based VAD is implemented in :py:func:`bob.kaldi.compute_vad`. The function expects the speech samples as :obj:`numpy.ndarray` and the sampling rate as :obj:`float`, and returns an array of VAD labels :obj:`numpy.ndarray` with the labels of 0 (zero) or 1 (one) per speech frame: .. doctest:: >>> sample = pkg_resources.resource_filename('bob.kaldi', 'test/data/sample16k.wav') >>> data = bob.io.audio.reader(sample) >>> VAD_labels = bob.kaldi.compute_vad(data.load()[0], data.rate) >>> print (len(VAD_labels)) 317 DNN-based --------- A Deep Neural Network (DNN), frame-based, VAD is implemented in :py:func:`bob.kaldi.compute_dnn_vad`. Pre-trained DNN on AMI_ database with headset microphone recordings is used for forward pass of mfcc features. The VAD decision is computed by comparing the silence posterior feature with the silence threshold. .. doctest:: >>> DNN_VAD_labels = bob.kaldi.compute_dnn_vad(data.load()[0], data.rate) >>> print (len(DNN_VAD_labels)) 317 ================================ Speaker recognition evaluation ================================ MFCC Extraction --------------- Two functions are implemented to extract MFCC features :py:func:`bob.kaldi.mfcc` and :py:func:`bob.kaldi.mfcc_from_path`. The former function accepts the speech samples as :obj:`numpy.ndarray`, whereas the latter the filename as :obj:`str`: 1. :py:func:`bob.kaldi.mfcc` .. doctest:: >>> feat = bob.kaldi.mfcc(data.load()[0], data.rate, normalization=False) >>> print (feat.shape) (317, 39) 2. :py:func:`bob.kaldi.mfcc_from_path` .. doctest:: >>> feat = bob.kaldi.mfcc_from_path(sample) >>> print (feat.shape) (317, 39) UBM training and evaluation --------------------------- Both diagonal and full covariance Universal Background Models (UBMs) are supported, speakers can be enrolled and scored: .. doctest:: >>> # Train small diagonall GMM >>> diag_gmm_file = tempfile.NamedTemporaryFile() >>> full_gmm_file = tempfile.NamedTemporaryFile() >>> dubm = bob.kaldi.ubm_train(feat, diag_gmm_file.name, num_gauss=2, num_gselect=2, num_iters=2) >>> # Train small full GMM >>> ubm = bob.kaldi.ubm_full_train(feat, dubm, full_gmm_file.name, num_gselect=2, num_iters=2) >>> # Enrollement - MAP adaptation of the UBM-GMM >>> spk_model = bob.kaldi.ubm_enroll(feat, dubm) >>> # GMM scoring >>> score = bob.kaldi.gmm_score(feat, spk_model, dubm) >>> print ('%.3f' % score) 0.282 iVector + PLDA training and evaluation -------------------------------------- The implementation is based on Kaldi recipe SRE10_. It includes ivector extrator training from full-diagonal GMMs, PLDA model training, and PLDA scoring. .. doctest:: >>> plda_file = tempfile.NamedTemporaryFile() >>> mean_file = tempfile.NamedTemporaryFile() >>> spk_file = tempfile.NamedTemporaryFile() >>> test_file = pkg_resources.resource_filename('bob.kaldi', 'test/data/test-mobio.ivector') >>> features = pkg_resources.resource_filename('bob.kaldi', 'test/data/feats-mobio.npy') >>> train_feats = numpy.load(features) >>> test_feats = numpy.loadtxt(test_file) >>> # Train PLDA model; plda[0] - PLDA model, plda[1] - global mean >>> plda = bob.kaldi.plda_train(train_feats, plda_file.name, mean_file.name) >>> # Speaker enrollment (calculate average iVectors for the first speaker) >>> enrolled = bob.kaldi.plda_enroll(train_feats[0], plda[1]) >>> # Calculate PLDA score >>> score = bob.kaldi.plda_score(test_feats, enrolled, plda[0], plda[1]) >>> print ('%.4f' % score) -23.9922 ====================== Deep Neural Networks ====================== Forward pass ------------ A forward-pass with pre-trained DNN is implemented in :py:func:`bob.kaldi.nnet_forward`. Output posterior features are returned as :obj:`numpy.ndarray`. First output features of each row (a processed speech frame) contain posteriors of silence, laughter and noise, indexed 0, 1 and 2, respectively. These posteriors are thus used for silence detection in :py:func:`bob.kaldi.compute_dnn_vad`, but might be used also for the laughter and noise detection as well. .. doctest:: >>> nnetfile = pkg_resources.resource_filename('bob.kaldi', 'test/dnn/ami.nnet.txt') >>> transfile = pkg_resources.resource_filename('bob.kaldi', 'test/dnn/ami.feature_transform.txt') >>> feats = bob.kaldi.cepstral(data.load()[0], 'mfcc', data.rate, normalization=False) >>> nnetf = open(nnetfile) >>> trnf = open(transfile) >>> dnn = nnetf.read() >>> trn = trnf.read() >>> nnetf.close() >>> trnf.close() >>> ours = bob.kaldi.nnet_forward(feats, dnn, trn) >>> print (ours.shape) (317, 43) .. include:: links.rst