Python API for bob.ip.tensorflow_extractor¶
Classes¶
Feature extractor using tensorflow |
|
Wrapper for the free FaceNet variant: https://github.com/davidsandberg/facenet |
|
MTCNN v1 wrapper. |
Detailed API¶
-
bob.ip.tensorflow_extractor.
get_config
()[source]¶ Returns a string containing the configuration information.
-
class
bob.ip.tensorflow_extractor.
FaceNet
(model_path=None, image_size=160, layer_name='embeddings:0', **kwargs)¶ Bases:
object
Wrapper for the free FaceNet variant: https://github.com/davidsandberg/facenet
To use this class as a bob.bio.base extractor:
from bob.bio.base.extractor import Extractor class FaceNetExtractor(FaceNet, Extractor): pass extractor = FaceNetExtractor()
And for a preprocessor you can use:
from bob.bio.face.preprocessor import FaceCrop # This is the size of the image that this model expects CROPPED_IMAGE_HEIGHT = 160 CROPPED_IMAGE_WIDTH = 160 # eye positions for frontal images RIGHT_EYE_POS = (46, 53) LEFT_EYE_POS = (46, 107) # Crops the face using eye annotations preprocessor = FaceCrop( cropped_image_size=(CROPPED_IMAGE_HEIGHT, CROPPED_IMAGE_WIDTH), cropped_positions={'leye': LEFT_EYE_POS, 'reye': RIGHT_EYE_POS}, color_channel='rgb' )
-
__init__
(model_path=None, image_size=160, layer_name='embeddings:0', **kwargs)[source]¶ Initialize self. See help(type(self)) for accurate signature.
-
-
class
bob.ip.tensorflow_extractor.
MTCNN
(min_size=40, factor=0.709, thresholds=(0.6, 0.7, 0.7), model_path='/scratch/builds/bob/bob.ip.tensorflow_extractor/miniconda/conda-bld/bob.ip.tensorflow_extractor_1601738085240/_test_env_placehold_placehold_placehold_placehold_placehold_placehold_placehold_placehold_placehold_placehold_placehold_placehold_placehold_pla/lib/python3.7/site-packages/bob/ip/tensorflow_extractor/data/mtcnn/mtcnn.pb')¶ Bases:
object
MTCNN v1 wrapper. See https://kpzhang93.github.io/MTCNN_face_detection_alignment/index.html for more details on MTCNN and see Face detection using MTCNN for an example code.
-
__init__
(min_size=40, factor=0.709, thresholds=(0.6, 0.7, 0.7), model_path='/scratch/builds/bob/bob.ip.tensorflow_extractor/miniconda/conda-bld/bob.ip.tensorflow_extractor_1601738085240/_test_env_placehold_placehold_placehold_placehold_placehold_placehold_placehold_placehold_placehold_placehold_placehold_placehold_placehold_pla/lib/python3.7/site-packages/bob/ip/tensorflow_extractor/data/mtcnn/mtcnn.pb')[source]¶ Initialize self. See help(type(self)) for accurate signature.
-
annotations
(img)[source]¶ Detects all faces in the image
- Parameters
img (numpy.ndarray) – An RGB image in Bob format.
- Returns
A list of annotations. Annotations are dictionaries that contain the following keys:
topleft
,bottomright
,reye
,leye
,nose
,mouthright
,mouthleft
, andquality
.- Return type
-
detect
(img)[source]¶ Detects all faces in the image.
- Parameters
img (numpy.ndarray) – An RGB image in Bob format.
- Returns
A tuple of boxes, probabilities, and landmarks.
- Return type
-
-
class
bob.ip.tensorflow_extractor.
Extractor
(checkpoint_filename, input_tensor, graph, debug=False)¶ Bases:
object
Feature extractor using tensorflow
-
__call__
(data)[source]¶ Forward the data with the loaded neural network
- Parameters
image (numpy.ndarray) – Input Data
- Returns
The features.
- Return type
-
__init__
(checkpoint_filename, input_tensor, graph, debug=False)[source]¶ Loads the tensorflow model
- Parameters
checkpoint_filename (str) – Path of your checkpoint. If the .meta file is providede the last checkpoint will be loaded.
model – input_tensor: tf.Tensor used as a data entrypoint. It can be a tf.placeholder, the result of tf.train.string_input_producer, etc
graph – A tf.Tensor containing the operations to be executed
-