bob.ip.facedetect
2.1.4
Face Detection using Python and Bob
Python API
bob.ip.facedetect
Docs
»
Index
Index
A
|
B
|
C
|
D
|
E
|
F
|
G
|
I
|
L
|
M
|
N
|
O
|
P
|
Q
|
R
|
S
|
T
A
add() (bob.ip.facedetect.Cascade method)
add_from_db() (bob.ip.facedetect.TrainingSet method)
add_image() (bob.ip.facedetect.TrainingSet method)
append() (bob.ip.facedetect.FeatureExtractor method)
area (bob.ip.facedetect.BoundingBox attribute)
average_detections() (in module bob.ip.facedetect)
B
best_detection() (in module bob.ip.facedetect)
bob.ip.facedetect (module)
Bootstrap (class in bob.ip.facedetect)
bottom (bob.ip.facedetect.BoundingBox attribute)
bottom_f (bob.ip.facedetect.BoundingBox attribute)
bottomright (bob.ip.facedetect.BoundingBox attribute)
bottomright_f (bob.ip.facedetect.BoundingBox attribute)
bounding_box_from_annotation() (in module bob.ip.facedetect)
BoundingBox (class in bob.ip.facedetect)
C
Cascade (class in bob.ip.facedetect)
center (bob.ip.facedetect.BoundingBox attribute)
contains() (bob.ip.facedetect.BoundingBox method)
create_from_boosted_machine() (bob.ip.facedetect.Cascade method)
D
default_cascade() (in module bob.ip.facedetect)
detect_all_faces() (in module bob.ip.facedetect)
detect_single_face() (in module bob.ip.facedetect)
E
expected_eye_positions() (in module bob.ip.facedetect)
extract() (bob.ip.facedetect.TrainingSet method)
extract_all() (bob.ip.facedetect.FeatureExtractor method)
extract_indexed() (bob.ip.facedetect.FeatureExtractor method)
extractor() (bob.ip.facedetect.FeatureExtractor method)
extractors (bob.ip.facedetect.FeatureExtractor attribute)
F
feature_extractor() (bob.ip.facedetect.TrainingSet method)
FeatureExtractor (class in bob.ip.facedetect)
G
generate_boosted_machine() (bob.ip.facedetect.Cascade method)
get_config() (in module bob.ip.facedetect)
group_detections() (in module bob.ip.facedetect)
I
image (bob.ip.facedetect.FeatureExtractor attribute)
is_valid_for() (bob.ip.facedetect.BoundingBox method)
iterate() (bob.ip.facedetect.Sampler method)
(bob.ip.facedetect.TrainingSet method)
iterate_cascade() (bob.ip.facedetect.Sampler method)
L
left (bob.ip.facedetect.BoundingBox attribute)
left_f (bob.ip.facedetect.BoundingBox attribute)
load() (bob.ip.facedetect.Cascade method)
(bob.ip.facedetect.FeatureExtractor method)
(bob.ip.facedetect.TrainingSet method)
M
mean_variance() (bob.ip.facedetect.FeatureExtractor method)
mirror_x() (bob.ip.facedetect.BoundingBox method)
model_indices (bob.ip.facedetect.FeatureExtractor attribute)
N
number_of_features (bob.ip.facedetect.FeatureExtractor attribute)
number_of_labels (bob.ip.facedetect.FeatureExtractor attribute)
O
offset() (bob.ip.facedetect.FeatureExtractor method)
overlap() (bob.ip.facedetect.BoundingBox method)
overlapping_detections() (in module bob.ip.facedetect)
P
parallel_part() (in module bob.ip.facedetect)
patch_size (bob.ip.facedetect.FeatureExtractor attribute)
prepare() (bob.ip.facedetect.Cascade method)
(bob.ip.facedetect.FeatureExtractor method)
prune_detections() (in module bob.ip.facedetect)
Q
quasi_random_indices() (in module bob.ip.facedetect)
R
read_annotation_file() (in module bob.ip.facedetect)
right (bob.ip.facedetect.BoundingBox attribute)
right_f (bob.ip.facedetect.BoundingBox attribute)
run() (bob.ip.facedetect.Bootstrap method)
S
sample() (bob.ip.facedetect.Sampler method)
(bob.ip.facedetect.TrainingSet method)
sample_scaled() (bob.ip.facedetect.Sampler method)
Sampler (class in bob.ip.facedetect)
save() (bob.ip.facedetect.Cascade method)
(bob.ip.facedetect.FeatureExtractor method)
(bob.ip.facedetect.TrainingSet method)
scale() (bob.ip.facedetect.BoundingBox method)
scales() (bob.ip.facedetect.Sampler method)
shift() (bob.ip.facedetect.BoundingBox method)
similarity() (bob.ip.facedetect.BoundingBox method)
size (bob.ip.facedetect.BoundingBox attribute)
size_f (bob.ip.facedetect.BoundingBox attribute)
T
top (bob.ip.facedetect.BoundingBox attribute)
top_f (bob.ip.facedetect.BoundingBox attribute)
topleft (bob.ip.facedetect.BoundingBox attribute)
topleft_f (bob.ip.facedetect.BoundingBox attribute)
TrainingSet (class in bob.ip.facedetect)