bob.ip.binseg.configs.models.lwnetΒΆ
Little W-Net for image segmentation
The Little W-Net architecture contains roughly around 70k parameters and closely matches (or outperforms) other more complex techniques.
Reference: [GALDRAN-2020]
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""Little W-Net for image segmentation
The Little W-Net architecture contains roughly around 70k parameters and
closely matches (or outperforms) other more complex techniques.
Reference: [GALDRAN-2020]_
"""
from torch.optim import Adam
from torch.optim.lr_scheduler import CosineAnnealingLR
from bob.ip.binseg.models.losses import MultiWeightedBCELogitsLoss
from bob.ip.binseg.models.lwnet import lwnet
# config
max_lr = 0.01 # start
min_lr = 1e-08 # valley
cycle = 50 # epochs for a complete scheduling cycle
model = lwnet()
criterion = MultiWeightedBCELogitsLoss()
optimizer = Adam(
model.parameters(),
lr=max_lr,
)
scheduler = CosineAnnealingLR(
optimizer,
T_max=cycle,
eta_min=min_lr,
)