Retinal Vessel Segmentation for Retinography

driu

hed

m2unet

unet

Dataset

2nd. Annot.

15M

14.7M

0.55M

25.8M

drive

0.788 (0.021)

0.768 (0.031)

0.750 (0.036)

0.771 (0.027)

0.775 (0.029)

stare

0.759 (0.028)

0.786 (0.100)

0.738 (0.193)

0.800 (0.080)

0.806 (0.072)

chasedb1

0.768 (0.023)

0.778 (0.031)

0.777 (0.028)

0.776 (0.031)

0.779 (0.028)

hrf

0.742 (0.049)

0.719 (0.047)

0.735 (0.045)

0.746 (0.046)

iostar-vessel

0.790 (0.023)

0.792 (0.020)

0.788 (0.021)

0.783 (0.019)

Notes

  • The following table describes recommended batch sizes for 24Gb of RAM GPU card, for supervised training of COD-systems:

    # change <model> and <dataset> by one of items bellow
    $ bob binseg experiment -vv <model> <dataset> --batch-size=<see-table> --device="cuda:0"
    

    Models / Datasets

    drive-covd

    stare-covd

    chasedb1-covd

    iostar-vessel-covd

    hrf-covd

    driu / driu-bn

    4

    4

    2

    2

    2

    m2unet

    8

    4

    4

    4

    4