Source code for bob.ip.binseg.engine.adabound

#!/usr/bin/env python
# -*- coding: utf-8 -*-

"""
Implementation of the `AdaBound optimizer
<https://github.com/Luolc/AdaBound/blob/master/adabound/adabound.py>`::

    @inproceedings{Luo2019AdaBound,
      author = {Luo, Liangchen and Xiong, Yuanhao and Liu, Yan and Sun, Xu},
      title = {Adaptive Gradient Methods with Dynamic Bound of Learning Rate},
      booktitle = {Proceedings of the 7th International Conference on Learning Representations},
      month = {May},
      year = {2019},
      address = {New Orleans, Louisiana}
    }

"""

import math
import torch
import torch.optim


[docs]class AdaBound(torch.optim.Optimizer): """Implements the AdaBound algorithm. Parameters ---------- params : list Iterable of parameters to optimize or dicts defining parameter groups lr : :obj:`float`, optional Adam learning rate betas : :obj:`tuple`, optional Coefficients (as a 2-tuple of floats) used for computing running averages of gradient and its square final_lr : :obj:`float`, optional Final (SGD) learning rate gamma : :obj:`float`, optional Convergence speed of the bound functions eps : :obj:`float`, optional Term added to the denominator to improve numerical stability weight_decay : :obj:`float`, optional Weight decay (L2 penalty) amsbound : :obj:`bool`, optional Whether to use the AMSBound variant of this algorithm """ def __init__( self, params, lr=1e-3, betas=(0.9, 0.999), final_lr=0.1, gamma=1e-3, eps=1e-8, weight_decay=0, amsbound=False, ): if not 0.0 <= lr: raise ValueError("Invalid learning rate: {}".format(lr)) if not 0.0 <= eps: raise ValueError("Invalid epsilon value: {}".format(eps)) if not 0.0 <= betas[0] < 1.0: raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0])) if not 0.0 <= betas[1] < 1.0: raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1])) if not 0.0 <= final_lr: raise ValueError("Invalid final learning rate: {}".format(final_lr)) if not 0.0 <= gamma < 1.0: raise ValueError("Invalid gamma parameter: {}".format(gamma)) defaults = dict( lr=lr, betas=betas, final_lr=final_lr, gamma=gamma, eps=eps, weight_decay=weight_decay, amsbound=amsbound, ) super(AdaBound, self).__init__(params, defaults) self.base_lrs = list(map(lambda group: group["lr"], self.param_groups)) def __setstate__(self, state): super(AdaBound, self).__setstate__(state) for group in self.param_groups: group.setdefault("amsbound", False)
[docs] def step(self, closure=None): """Performs a single optimization step. Parameters ---------- closure : :obj:`callable`, optional A closure that reevaluates the model and returns the loss. """ loss = None if closure is not None: loss = closure() for group, base_lr in zip(self.param_groups, self.base_lrs): for p in group["params"]: if p.grad is None: continue grad = p.grad.data if grad.is_sparse: raise RuntimeError( "Adam does not support sparse gradients, please consider SparseAdam instead" ) amsbound = group["amsbound"] state = self.state[p] # State initialization if len(state) == 0: state["step"] = 0 # Exponential moving average of gradient values state["exp_avg"] = torch.zeros_like(p.data) # Exponential moving average of squared gradient values state["exp_avg_sq"] = torch.zeros_like(p.data) if amsbound: # Maintains max of all exp. moving avg. of sq. grad. values state["max_exp_avg_sq"] = torch.zeros_like(p.data) exp_avg, exp_avg_sq = state["exp_avg"], state["exp_avg_sq"] if amsbound: max_exp_avg_sq = state["max_exp_avg_sq"] beta1, beta2 = group["betas"] state["step"] += 1 if group["weight_decay"] != 0: grad = grad.add(group["weight_decay"], p.data) # Decay the first and second moment running average coefficient exp_avg.mul_(beta1).add_(1 - beta1, grad) exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad) if amsbound: # Maintains the maximum of all 2nd moment running avg. till now torch.max(max_exp_avg_sq, exp_avg_sq, out=max_exp_avg_sq) # Use the max. for normalizing running avg. of gradient denom = max_exp_avg_sq.sqrt().add_(group["eps"]) else: denom = exp_avg_sq.sqrt().add_(group["eps"]) bias_correction1 = 1 - beta1 ** state["step"] bias_correction2 = 1 - beta2 ** state["step"] step_size = group["lr"] * math.sqrt(bias_correction2) / bias_correction1 # Applies bounds on actual learning rate # lr_scheduler cannot affect final_lr, this is a workaround to apply lr decay final_lr = group["final_lr"] * group["lr"] / base_lr lower_bound = final_lr * (1 - 1 / (group["gamma"] * state["step"] + 1)) upper_bound = final_lr * (1 + 1 / (group["gamma"] * state["step"])) step_size = torch.full_like(denom, step_size) step_size.div_(denom).clamp_(lower_bound, upper_bound).mul_(exp_avg) p.data.add_(-step_size) return loss
[docs]class AdaBoundW(torch.optim.Optimizer): """Implements AdaBound algorithm with Decoupled Weight Decay (See https://arxiv.org/abs/1711.05101) Parameters ---------- params : list Iterable of parameters to optimize or dicts defining parameter groups lr : :obj:`float`, optional Adam learning rate betas : :obj:`tuple`, optional Coefficients (as a 2-tuple of floats) used for computing running averages of gradient and its square final_lr : :obj:`float`, optional Final (SGD) learning rate gamma : :obj:`float`, optional Convergence speed of the bound functions eps : :obj:`float`, optional Term added to the denominator to improve numerical stability weight_decay : :obj:`float`, optional Weight decay (L2 penalty) amsbound : :obj:`bool`, optional Whether to use the AMSBound variant of this algorithm """ def __init__( self, params, lr=1e-3, betas=(0.9, 0.999), final_lr=0.1, gamma=1e-3, eps=1e-8, weight_decay=0, amsbound=False, ): if not 0.0 <= lr: raise ValueError("Invalid learning rate: {}".format(lr)) if not 0.0 <= eps: raise ValueError("Invalid epsilon value: {}".format(eps)) if not 0.0 <= betas[0] < 1.0: raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0])) if not 0.0 <= betas[1] < 1.0: raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1])) if not 0.0 <= final_lr: raise ValueError("Invalid final learning rate: {}".format(final_lr)) if not 0.0 <= gamma < 1.0: raise ValueError("Invalid gamma parameter: {}".format(gamma)) defaults = dict( lr=lr, betas=betas, final_lr=final_lr, gamma=gamma, eps=eps, weight_decay=weight_decay, amsbound=amsbound, ) super(AdaBoundW, self).__init__(params, defaults) self.base_lrs = list(map(lambda group: group["lr"], self.param_groups)) def __setstate__(self, state): super(AdaBoundW, self).__setstate__(state) for group in self.param_groups: group.setdefault("amsbound", False)
[docs] def step(self, closure=None): """Performs a single optimization step. Parameters ---------- closure : :obj:`callable`, optional A closure that reevaluates the model and returns the loss. """ loss = None if closure is not None: loss = closure() for group, base_lr in zip(self.param_groups, self.base_lrs): for p in group["params"]: if p.grad is None: continue grad = p.grad.data if grad.is_sparse: raise RuntimeError( "Adam does not support sparse gradients, please consider SparseAdam instead" ) amsbound = group["amsbound"] state = self.state[p] # State initialization if len(state) == 0: state["step"] = 0 # Exponential moving average of gradient values state["exp_avg"] = torch.zeros_like(p.data) # Exponential moving average of squared gradient values state["exp_avg_sq"] = torch.zeros_like(p.data) if amsbound: # Maintains max of all exp. moving avg. of sq. grad. values state["max_exp_avg_sq"] = torch.zeros_like(p.data) exp_avg, exp_avg_sq = state["exp_avg"], state["exp_avg_sq"] if amsbound: max_exp_avg_sq = state["max_exp_avg_sq"] beta1, beta2 = group["betas"] state["step"] += 1 # Decay the first and second moment running average coefficient exp_avg.mul_(beta1).add_(1 - beta1, grad) exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad) if amsbound: # Maintains the maximum of all 2nd moment running avg. till now torch.max(max_exp_avg_sq, exp_avg_sq, out=max_exp_avg_sq) # Use the max. for normalizing running avg. of gradient denom = max_exp_avg_sq.sqrt().add_(group["eps"]) else: denom = exp_avg_sq.sqrt().add_(group["eps"]) bias_correction1 = 1 - beta1 ** state["step"] bias_correction2 = 1 - beta2 ** state["step"] step_size = group["lr"] * math.sqrt(bias_correction2) / bias_correction1 # Applies bounds on actual learning rate # lr_scheduler cannot affect final_lr, this is a workaround to # apply lr decay final_lr = group["final_lr"] * group["lr"] / base_lr lower_bound = final_lr * (1 - 1 / (group["gamma"] * state["step"] + 1)) upper_bound = final_lr * (1 + 1 / (group["gamma"] * state["step"])) step_size = torch.full_like(denom, step_size) step_size.div_(denom).clamp_(lower_bound, upper_bound).mul_(exp_avg) if group["weight_decay"] != 0: decayed_weights = torch.mul(p.data, group["weight_decay"]) p.data.add_(-step_size) p.data.sub_(decayed_weights) else: p.data.add_(-step_size) return loss