Source code for bob.ip.binseg.data.transforms

#!/usr/bin/env python
# -*- coding: utf-8 -*-

"""Image transformations for our pipelines

Differences between methods here and those from
:py:mod:`torchvision.transforms` is that these support multiple simultaneous
image inputs, which are required to feed segmentation networks (e.g. image and
labels or masks).  We also take care of data augmentations, in which random
flipping and rotation needs to be applied across all input images, but color
jittering, for example, only on the input image.
"""

import random

import numpy
import PIL.Image
import torchvision.transforms
import torchvision.transforms.functional


[docs]class TupleMixin: """Adds support to work with tuples of objects to torchvision transforms""" def __call__(self, *args): return [super(TupleMixin, self).__call__(k) for k in args]
[docs]class CenterCrop(TupleMixin, torchvision.transforms.CenterCrop): pass
[docs]class Pad(TupleMixin, torchvision.transforms.Pad): pass
[docs]class Resize(TupleMixin, torchvision.transforms.Resize): pass
[docs]class ToTensor(TupleMixin, torchvision.transforms.ToTensor): pass
[docs]class Compose(torchvision.transforms.Compose): def __call__(self, *args): for t in self.transforms: args = t(*args) return args
[docs]class SingleCrop: """ Crops one image at the given coordinates. Attributes ---------- i : int upper pixel coordinate. j : int left pixel coordinate. h : int height of the cropped image. w : int width of the cropped image. """ def __init__(self, i, j, h, w): self.i = i self.j = j self.h = h self.w = w def __call__(self, img): return img.crop((self.j, self.i, self.j + self.w, self.i + self.h))
[docs]class Crop(TupleMixin, SingleCrop): """ Crops multiple images at the given coordinates. Attributes ---------- i : int upper pixel coordinate. j : int left pixel coordinate. h : int height of the cropped image. w : int width of the cropped image. """ pass
[docs]class SingleAutoLevel16to8: """Converts a 16-bit image to 8-bit representation using "auto-level" This transform assumes that the input image is gray-scaled. To auto-level, we calculate the maximum and the minimum of the image, and consider such a range should be mapped to the [0,255] range of the destination image. """ def __call__(self, img): imin, imax = img.getextrema() irange = imax - imin return PIL.Image.fromarray( numpy.round( 255.0 * (numpy.array(img).astype(float) - imin) / irange ).astype("uint8"), ).convert("L")
[docs]class AutoLevel16to8(TupleMixin, SingleAutoLevel16to8): """Converts multiple 16-bit images to 8-bit representations using "auto-level" This transform assumes that the input images are gray-scaled. To auto-level, we calculate the maximum and the minimum of the image, and consider such a range should be mapped to the [0,255] range of the destination image. """ pass
[docs]class SingleToRGB: """Converts from any input format to RGB, using an ADAPTIVE conversion. This transform takes the input image and converts it to RGB using py:method:`PIL.Image.Image.convert`, with `mode='RGB'` and using all other defaults. This may be aggressive if applied to 16-bit images without further considerations. """ def __call__(self, img): return img.convert(mode="RGB")
[docs]class ToRGB(TupleMixin, SingleToRGB): """Converts from any input format to RGB, using an ADAPTIVE conversion. This transform takes the input image and converts it to RGB using py:method:`PIL.Image.Image.convert`, with `mode='RGB'` and using all other defaults. This may be aggressive if applied to 16-bit images without further considerations. """ pass
[docs]class RandomHorizontalFlip(torchvision.transforms.RandomHorizontalFlip): """Randomly flips all input images horizontally""" def __call__(self, *args): if random.random() < self.p: return [ torchvision.transforms.functional.hflip(img) for img in args ] else: return args
[docs]class RandomVerticalFlip(torchvision.transforms.RandomVerticalFlip): """Randomly flips all input images vertically""" def __call__(self, *args): if random.random() < self.p: return [ torchvision.transforms.functional.vflip(img) for img in args ] else: return args
[docs]class RandomRotation(torchvision.transforms.RandomRotation): """Randomly rotates all input images by the same amount Unlike the current torchvision implementation, we also accept a probability for applying the rotation. Parameters ---------- p : :py:class:`float`, Optional probability at which the operation is applied **kwargs : dict passed to parent. Notice that, if not set, we use the following defaults here for the underlying transform from torchvision: * ``degrees``: 15 * ``resample``: ``PIL.Image.BILINEAR`` """ def __init__(self, p=0.5, **kwargs): kwargs.setdefault("degrees", 15) kwargs.setdefault("resample", PIL.Image.BILINEAR) super(RandomRotation, self).__init__(**kwargs) self.p = p def __call__(self, *args): # applies **the same** rotation to all inputs (data and ground-truth) if random.random() < self.p: angle = self.get_params(self.degrees) return [ torchvision.transforms.functional.rotate( img, angle, self.resample, self.expand, self.center ) for img in args ] else: return args def __repr__(self): retval = super(RandomRotation, self).__repr__() return retval.replace("(", f"(p={self.p},", 1)
[docs]class ColorJitter(torchvision.transforms.ColorJitter): """Randomly applies a color jitter transformation on the **first** image Notice this transform extension, unlike others in this module, only affects the first image passed as input argument. Unlike the current torchvision implementation, we also accept a probability for applying the jitter. Parameters ---------- p : :py:class:`float`, Optional probability at which the operation is applied **kwargs : dict passed to parent. Notice that, if not set, we use the following defaults here for the underlying transform from torchvision: * ``brightness``: 0.3 * ``contrast``: 0.3 * ``saturation``: 0.02 * ``hue``: 0.02 """ def __init__(self, p=0.5, **kwargs): kwargs.setdefault("brightness", 0.3) kwargs.setdefault("contrast", 0.3) kwargs.setdefault("saturation", 0.02) kwargs.setdefault("hue", 0.02) super(ColorJitter, self).__init__(**kwargs) self.p = p def __call__(self, *args): if random.random() < self.p: # applies color jitter only to the input image not ground-truth return [super(ColorJitter, self).__call__(args[0]), *args[1:]] else: return args def __repr__(self): retval = super(ColorJitter, self).__repr__() return retval.replace("(", f"(p={self.p},", 1)