Retinal Vessel Segmentation for Retinography¶
Dataset |
2nd. Annot. |
15M |
14.7M |
550k |
25.8M |
68k |
---|---|---|---|---|---|---|
0.788 (0.021) |
0.828 |
|||||
0.759 (0.028) |
0.839 |
|||||
0.768 (0.023) |
0.820 |
|||||
|
0.814 |
|||||
|
0.744 |
|||||
0.832 |
Notes¶
HRF models were trained using half the full resolution (1168x1648)
The following table describes recommended batch sizes for 24Gb of RAM GPU card:
8 |
8 |
16 |
4 |
4 |
|
5 |
4 |
6 |
2 |
4 |
|
4 |
4 |
6 |
2 |
4 |
|
1 |
1 |
1 |
1 |
4 |
|
4 |
4 |
6 |
2 |
4 |
Results for datasets with (768x768 resolution)
Dataset |
2nd. Annot. |
15M |
14.7M |
550k |
25.8M |
68k |
---|---|---|---|---|---|---|
0.812 |
0.806 |
0.800 |
0.814 |
0.807 |
||
0.819 |
0.812 |
0.793 |
0.829 |
0.817 |
||
0.809 |
0.790 |
0.793 |
0.803 |
0.797 |
||
0.799 |
0.774 |
0.773 |
0.804 |
0.800 |
||
0.825 |
0.818 |
0.813 |
0.820 |
0.820 |
||
Combined datasets |
0.811 |
0.798 |
0.798 |
0.813 |
0.804 |
Notes¶
The following table describes recommended batch sizes for 24Gb of RAM GPU card:
8 |
8 |
8 |
4 |
8 |
|
8 |
8 |
8 |
4 |
8 |
|
8 |
8 |
8 |
4 |
8 |
|
8 |
8 |
8 |
4 |
8 |
|
8 |
8 |
8 |
4 |
8 |
Results for datasets with (1024x1024 resolution)
Dataset |
2nd. Annot. |
15M |
14.7M |
550k |
25.8M |
68k |
---|---|---|---|---|---|---|
0.813 |
0.806 |
0.804 |
0.815 |
0.809 |
||
0.821 |
0.812 |
0.816 |
0.820 |
0.814 |
||
0.806 |
0.806 |
0.790 |
0.806 |
0.793 |
||
0.805 |
0.793 |
0.786 |
0.807 |
0.805 |
||
0.829 |
0.825 |
0.817 |
0.825 |
0.824 |
Notes¶
The following table describes recommended batch sizes for 24Gb of RAM GPU card:
8 |
8 |
8 |
4 |
8 |
|
8 |
8 |
8 |
4 |
8 |
|
8 |
8 |
8 |
4 |
8 |
|
8 |
8 |
8 |
4 |
8 |
|
8 |
8 |
8 |
4 |
8 |