Bob’s Basic Image Processing Routines

Todo

Explain DCTFeatures constructor in more detail.

(The original entry is located in /home/travis/build/bioidiap/bob.ip.base/bob/ip/base/__init__.py:docstring of bob.ip.base.DCTFeatures, line 14.)

Todo

The parameter(s) ‘levels, max_level, min_level, quantization_table’ are used, but not documented.

Parameters:

dtype : numpy.dtype

[default: numpy.uint8] The data-type for the GLCM class

glcm : bob.ip.base.GLCM

The GLCM object to use for copy-construction

(The original entry is located in /home/travis/build/bioidiap/bob.ip.base/bob/ip/base/__init__.py:docstring of bob.ip.base.GLCM, line 19.)

Todo

Explain GaussianScaleSpace constructor in more detail.

(The original entry is located in /home/travis/build/bioidiap/bob.ip.base/bob/ip/base/__init__.py:docstring of bob.ip.base.GaussianScaleSpace, line 13.)

Todo

UPDATE as this is not true

(The original entry is located in /home/travis/build/bioidiap/bob.ip.base/bob/ip/base/__init__.py:docstring of bob.ip.base.LBPTop, line 7.)

Todo

Add documentation for MultiscaleRetinex

(The original entry is located in /home/travis/build/bioidiap/bob.ip.base/bob/ip/base/__init__.py:docstring of bob.ip.base.MultiscaleRetinex, line 13.)

Todo

Check if this documentation is correct (seems to be copied from bob.ip.base.SelfQuotientImage

(The original entry is located in /home/travis/build/bioidiap/bob.ip.base/bob/ip/base/__init__.py:docstring of bob.ip.base.MultiscaleRetinex.process, line 4.)

Todo

Explain SIFT constructor in more detail.

(The original entry is located in /home/travis/build/bioidiap/bob.ip.base/bob/ip/base/__init__.py:docstring of bob.ip.base.SIFT, line 13.)

Todo

explain SelfQuotientImage constructor

(The original entry is located in /home/travis/build/bioidiap/bob.ip.base/bob/ip/base/__init__.py:docstring of bob.ip.base.SelfQuotientImage, line 15.)

Todo

Explain TanTriggs constructor in more detail.

(The original entry is located in /home/travis/build/bioidiap/bob.ip.base/bob/ip/base/__init__.py:docstring of bob.ip.base.TanTriggs, line 13.)

Todo

Explain VLDSIFT constructor in more detail.

(The original entry is located in /home/travis/build/bioidiap/bob.ip.base/bob/ip/base/__init__.py:docstring of bob.ip.base.VLDSIFT, line 12.)

Todo

Describe the output of the VLDSIFT.extract() method in more detail.

(The original entry is located in /home/travis/build/bioidiap/bob.ip.base/bob/ip/base/__init__.py:docstring of bob.ip.base.VLDSIFT.extract, line 8.)

Todo

Explain VLSIFT constructor in more detail.

(The original entry is located in /home/travis/build/bioidiap/bob.ip.base/bob/ip/base/__init__.py:docstring of bob.ip.base.VLSIFT, line 12.)

Todo

explain WeightedGaussian constructor

(The original entry is located in /home/travis/build/bioidiap/bob.ip.base/bob/ip/base/__init__.py:docstring of bob.ip.base.WeightedGaussian, line 13.)

Todo

Explain gamma correction in more detail

(The original entry is located in /home/travis/build/bioidiap/bob.ip.base/bob/ip/base/__init__.py:docstring of bob.ip.base.gamma_correction, line 3.)

This Python module contains base functionality from Bob bound to Python, available in the C++ counter-part bob::ip::base.

References

[Atanasoaei2012]Cosmin Atanasoaei. Multivariate Boosting with Look-up Tables for Face Processing, PhD thesis, EPFL, 2012. pdf
[Sanderson2002]Conrad Sanderson and Kuldip K. Paliwal. Polynomial Features for Robust Face Authentication, In Proceedings of the IEEE International Conference on Image Processing, 2002. pdf
[TanTriggs2007]Xiaoyang Tan and Bill Triggs. Enhanced Local Texture Feature Sets for Face Recognition Under Difficult Lighting Conditions, In International Conference on Analysis and Modeling of Faces and Gestures, 2007. pdf
[Jobson1997]D. Jobson, Z. Rahman and G. Woodell. A Multiscale Retinex for bridging the gap between color images and the Human observation of scenes, In IEEE Transactions on Image Processing, vol. 6, n. 7, 1997.
[Wang2004]H. Wang, S.Z. Li and Y. Wang. Face Recognition under Varying Lighting Conditions Using Self Quotient Image, In IEEE International Conference on Image Processing, vol. 2, pp. 1397-1400, 2004.
[Lowe2004]D. Lowe. Distinctive Image Features from Scale-Invariant Keypoints, In International Journal of Computer Vision, 2004.
[Dalal2005]N. Dalal, B. Triggs. Histograms of Oriented Gradients for Human Detection, In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2005.
[Haralick1973]R. M. Haralick, K. Shanmugam, I. Dinstein. Textural Features for Image Classification, In IEEE Transactions on Systems, Man and Cybernetics, vol. SMC-3, No. 6, p. 610-621, 1973.
[Szeliski2010]Richard Szeliski. Computer Vision: Algorithms and Applications (1st ed.). Springer-Verlag New York, USA, 2010.

Indices and tables