User Guide¶
By importing this package, you can use Bob native array reading and
writing routines to load and save files using various image formats, using the
simple plug-in technology for bob.io.base
, i.e.,
bob.io.base.load()
and bob.io.base.save()
.
>>> import bob.io.base
>>> import bob.io.image # under the hood: loads Bob plugin for image files
>>> img = bob.io.base.load(path_to_image)
In the following example, an image generated randomly using the method NumPy
numpy.random.random_integers()
, is saved in lossless PNG format. The
image must be of type uint8
or uint16
:
>>> my_image = numpy.random.random_integers(0,255,(3,256,256))
>>> bob.io.base.save(my_image.astype('uint8'), 'testimage.png') # saving the image in png format
>>> my_image_copy = bob.io.base.load('testimage.png')
>>> assert (my_image_copy == my_image).all()
The loaded image files can be 3D arrays (for RGB format) or 2D arrays (for
greyscale) of type uint8
or uint16
.
You can also get information about images without loading them using
bob.io.base.peek()
:
>>> bob.io.base.peek(path_to_image)
(dtype('uint8'), (3, 600, 512), (307200, 512, 1))
In order to visualize the loaded image you can use
bob.io.image.imshow()
:
>>> img = bob.io.base.load(path_to_image)
>>> bob.io.image.imshow(img)
(Source code, png, hires.png, pdf)
Or you can just get a view (not copy) of your image that is
matplotlib.pyplot
compatible using
bob.io.image.to_matplotlib()
:
>>> img_view_for_matplotlib = bob.io.image.to_matplotlib(img)
>>> assert img_view_for_matplotlib.shape[-1] == 3
>>> assert img_view_for_matplotlib.base is img
You can also get the original image back using bob.io.image.to_bob()
.