C and C++ API¶
This section includes information for using the pure C or C++ API for
manipulating bob.blitz
objects in compiled code.
C API¶
The C API of bob.blitz
allows users to leverage from automatic converters
between numpy.ndarray
and bob.blitz.array
within their
own python extensions. To use the C API, clients should first, include the
header file <bob.blitz/capi.h>
on their compilation units and then, make
sure to call once import_bob_blitz()
at their module instantiation, as
explained at the Python manual.
Here is a dummy C example showing how to include the header and where to call the import function:
#include <bob.blitz/capi.h>
PyMODINIT_FUNC initclient(void) {
PyObject* m Py_InitModule("client", ClientMethods);
if (!m) return;
// imports dependencies
if (import_bob_blitz() < 0) {
PyErr_Print();
PyErr_SetString(PyExc_ImportError, "cannot import module");
return 0;
}
return m;
}
Array Structure¶
-
type PyBlitzArrayObject¶
-
type PyBlitzArrayObject¶
The basic array structure represents a
bob.blitz.array
instance from the C-side of the interpreter. You should avoid direct access to the structure components (it is presented just as an overview on the functionality). Instead, use the accessor methods described below.typedef struct { PyObject_HEAD void* bzarr; void* data; int type_num; Py_ssize_t ndim; Py_ssize_t shape[BLITZ_ARRAY_MAXDIMS]; Py_ssize_t stride[BLITZ_ARRAY_MAXDIMS]; int writeable; PyObject* base; } PyBlitzArrayObject;
-
BLITZ_ARRAY_MAXDIMS¶
The maximum number of dimensions supported by the current
bob.blitz.array
implementation.
-
void *bzarr¶
This is a pointer that points to the allocated
blitz::Array
structure. This pointer is cast to the proper type and number of dimensions when operations on the data are requested.
-
void *data¶
A pointer to the data entry in the
blitz::Array<>
. This is equivalent to the operationblitz::Array<>::data()
.
-
int type_num¶
The numpy type number that is compatible with the elements of this array. It is a C representation of the C++ template parameter
T
. Only some types are current supported, namely:C/C++ type
Numpy Enum
Notes
bool
NPY_BOOL
uint8_t
NPY_UINT8
uint16_t
NPY_UINT16
uint32_t
NPY_UINT32
uint64_t
NPY_UINT64
int8_t
NPY_INT8
int16_t
NPY_INT16
int32_t
NPY_INT32
int64_t
NPY_INT64
float
NPY_FLOAT32
double
NPY_FLOAT64
long double
NPY_FLOAT128
Plat. Dependent
std::complex<float>
NPY_COMPLEX64
std::complex<double>
NPY_COMPLEX128
std::complex<long double>
NPY_COMPLEX256
Plat. Dependent
-
Py_ssize_t ndim¶
The rank of the
blitz::Array<>
allocated onbzarr
.
-
Py_ssize_t shape[BLITZ_ARRAY_MAXDIMS]¶
The shape of the
blitz::Array<>
allocated onbzarr
, in number of elements in each dimension.
-
Py_ssize_t stride[BLITZ_ARRAY_MAXDIMS]¶
The strides of the
blitz::Array<>
allocated onbzarr
, in number of bytes to jump to read the next element in each dimensions.
-
int writeable¶
Assumes the value of
1
(true), if the data is read-write.0
is set otherwise.
-
BLITZ_ARRAY_MAXDIMS¶
Basic Properties and Checking¶
-
int PyBlitzArray_Check(PyObject *o)¶
Checks if the input object
o
is aPyBlitzArrayObject
. Returns1
if it is, and0
otherwise.
-
int PyBlitzArray_CheckNumpyBase(PyArrayObject *o)¶
Checks if the input object
o
is aPyArrayObject
(i.e. anumpy.ndarray
), if so, checks if the base of the object is set and that it corresponds to the currentPyArrayObject
shape and stride settings. If so, returns1
. It returns0
otherwise.
-
int PyBlitzArray_TYPE(PyBlitzArrayObject *o)¶
Returns integral type number (as defined by the Numpy C-API) of elements in this blitz::Array<>. This is the formal method to query for
o->type_num
.
-
PyArray_Descr *PyBlitzArray_PyDTYPE(PyBlitzArrayObject *o)¶
Returns a new reference to a numpy C-API
PyArray_Descr*
equivalent to the internal type element T.
-
Py_ssize_t PyBlitzArray_NDIM(PyBlitzArrayObject *o)¶
Returns the number of dimensions in a given
bob.blitz.array
. This is the formal way to check foro->ndim
.
-
Py_ssize_t *PyBlitzArray_SHAPE(PyBlitzArrayObject *o)¶
Returns the C-stype shape for this blitz::Array<>. This is the formal method to query for
o->shape
. The shape represents the number of elements in each dimension of the array.
-
PyObject *PyBlitzArray_PySHAPE(PyBlitzArrayObject *o)¶
Returns a new reference to a Python tuple holding a copy of the shape for the given array. The shape represents the number of elements in each dimension of the array.
-
Py_ssize_t *PyBlitzArray_STRIDE(PyBlitzArrayObject *o)¶
Returns the C-stype stride for this blitz::Array<>. This is the formal method to query for
o->stride
. The strides in this object are represented in number of bytes and not in number of elements considering itstype_num
. This is compatible with thenumpy.ndarray
strategy.
-
PyObject *PyBlitzArray_PySTRIDE(PyBlitzArrayObject *o)¶
Returns a new reference to a Python tuple holding a copy of the strides for the given array. The strides in this object are represented in number of bytes and not in number of elements considering its
type_num
. This is compatible with thenumpy.ndarray
strategy.
-
int PyBlitzArray_WRITEABLE(PyBlitzArrayObject *o)¶
Returns
1
if the object is writeable,0
otherwise. This is the formal way to check foro->writeable
.
-
PyObject *PyBlitzArray_PyWRITEABLE(PyBlitzArrayObject *o)¶
Returns
True
if the object is writeable,False
otherwise.
-
PyObject *PyBlitzArray_BASE(PyBlitzArrayObject *o)¶
Returns a borrowed reference to the base of this object. The return value of this function may be
NULL
.
-
PyObject *PyBlitzArray_PyBASE(PyBlitzArrayObject *o)¶
Returns a new reference to the base of this object. If the internal
o->base
isNULL
, then returnsPy_None
. Use this when interfacing with the Python interpreter.
Indexing¶
-
PyObject *PyBlitzArray_GetItem(PyBlitzArrayObject *o, Py_ssize_t *pos)¶
Returns, as a PyObject, an item from the array. This will be a copy of the internal item. If you set it, it won’t set the original array.
o
should be the PyBlitzArrayObject to be queried.pos
should be a C-style array indicating the precise position to fetch. It is considered to have the same number of entries as the current array shape.
-
int PyBlitzArray_SetItem(PyBlitzArrayObject *o, Py_ssize_t *pos, PyObject *value)¶
Sets an given position on the array using any Python or numpy scalar.
o
should be the PyBlitzArrayObject to be set.pos
should be a C-style array indicating the precise position to set andvalue
, the Python or numpy scalar to set the value to.
Construction and Destruction¶
-
PyObject *PyBlitzArray_New(PyTypeObject *type, PyObject *args, PyObject *kwds)¶
Allocates memory and pre-initializes a
PyBlitzArrayObject*
object. This is the base allocator - seldomly used in user code.
-
void PyBlitzArray_Delete(PyBlitzArrayObject *o)¶
Completely deletes a
PyBlitzArrayObject*
and associated memory areas. This is the base deallocator - seldomly used in user code.
-
PyObject *PyBlitzArray_SimpleNew(int typenum, Py_ssize_t ndim, Py_ssize_t *shape)¶
Allocates a new
bob.blitz
with a given (supported) type and return it as a python object.typenum
should be set to the numpy type number of the array type (e.g.NPY_FLOAT64
).ndim
should be set to the total number of dimensions the array should have.shape
should be set to the array shape.
-
PyObject *PyBlitzArray_SimpleNewFromData(int type_num, Py_ssize_t ndim, Py_ssize_t *shape, Py_ssize_t *stride, void *data, int writeable)¶
Allocates a new
bob.blitz.array
with a given (supported) type and return it as a python object.typenum
should be set to the numpy type number of the array type (e.g.NPY_FLOAT64
).ndim
should be set to the total number of dimensions the array should have.shape
should be set to the array shape.stride
should be set to the array stride in the numpy style (in number of bits).data
should be a pointer to the begin of the data area.writeable
indicates if the resulting array should be writeble (set it to1
), or read-only (set it to0
).The memory area pointed by
data
is stolen from the user, which should not delete it anymore.
-
int PyBlitzArray_SimpleInit(PyBlitzArrayObject *arr, int typenum, Py_ssize_t ndim, Py_ssize_t *shape)¶
Initializes the given
PyBlitzArrayObject*
with a newblitz::Array
of the given typenum, dimensionality and shape. SeePyBlitzArray_SimpleNew()
for details on the parameters. This function does not check if the memory is already initialized. It returns 0 on success and -1 on failure.
To/From Numpy Converters¶
-
PyObject *PyBlitzArray_AsNumpyArray(PyBlitzArrayObject *o, PyArrayDescr *dtype)¶
Creates a shallow copy of the given
bob.blitz.array
as anumpy.ndarray
. The argumentdtype
may be given, in which case if the current data type is not the same, then forces the creation of a copy conforming to the require data type, if possible. You may setdtype
toNULL
in case you don’t mind the resulting data type.Returns a new reference.
-
PyObject *PyBlitzArray_FromNumpyArray(PyObject *o)¶
Creates a new
bob.blitz.array
from anumpy.ndarray
object in a shallow manner.Returns a new reference.
-
PyObject *PyBlitzArray_NUMPY_WRAP(PyObject *o)¶
Creates a shallow copy of the given
bob.blitz.array
as anumpy.ndarray
. This function is a shortcut replacement forPyBlitzArray_AsNumpyArray()
. It can be used when the input objecto
is surely of typePyBlitzArrayObject
. It creates a wrapperPyArrayObject
that contains, as base, a stolen reference to the input objecto
.It is designed like this so you can easily wrap freshly created objects of type
PyBlitzArrayObject
asPyArrayObject
. It assumes the input object is of the right type and wrap-able as anumpy.ndarray
. It does not check the objectbase
variable, assuming it is set toNULL
(what is the case to freshly createdPyBlitzArrayObject
’s). If you are not sure about the nature ofo
, use the slower but saferPyBlitzArray_AsNumpyArray()
.Note
The value of
o
can beNULL
, in which case this function returns immediately, allowing you to propagate exceptions.
Converter Functions for PyArg_Parse* family¶
-
int PyBlitzArray_Converter(PyObject *o, PyBlitzArrayObject **a)¶
This function is meant to be used with
PyArg_ParseTupleAndKeywords()
family of functions in the Python C-API. It converts an arbitrary input object into aPyBlitzArrayObject
that can be used as input into another function.You should use this converter when you don’t need to write-back into the input array. As any other standard Python converter, it returns a new reference to a
PyBlitzArrayObject
.It works efficiently if the input array is already a
PyBlitzArrayObject
or if it is aPyArrayObject
(i.e., a :py:class:numpy.ndarray
), with a matching base which is aPyBlitzArrayObject
. Otherwise, it creates a newPyBlitzArrayObject
by first creating aPyArrayObject
and then shallow wrapping it with aPyBlitzArrayObject
.Returns 0 if an error is detected, 1 on success.
-
int PyBlitzArray_BehavedConverter(PyObject *o, PyBlitzArrayObject **a)¶
This function operates like
PyBlitzArray_Converter()
, excepts it guarantees that the returned (underlying)blitz::Array<>
object is wrapped around a well-behavednumpy.ndarray
object (i.e. contiguous, memory-aligned, C-style).In the event the input object is already a
PyBlitzArrayObject
, then a new reference to it is returned. It does not check, in this particular case, that the input object is well-behaved.Returns 0 if an error is detected, 1 on success.
-
int PyBlitzArray_OutputConverter(PyObject *o, PyBlitzArrayObject **a)¶
This function is meant to be used with
PyArg_ParseTupleAndKeywords()
family of functions in the Python C-API. It converts an arbitrary input object into aPyBlitzArrayObject
that can be used as input/output or output into another function.You should use this converter when you need to write-back into the input array. The input type should be promptly convertible to a
numpy.ndarray
as withPyArray_OutputConverter()
. As any other standard Python converter, it returns a new reference to aPyBlitzArrayObject*
.Returns 0 if an error is detected, 1 on success.
-
int PyBlitzArray_IndexConverter(PyObject *o, PyBlitzArrayObject **shape)¶
Converts any compatible sequence into a C-array containing the shape information. The shape information and number of dimensions is stored on the previously allocated
PyBlitzArrayObject*
you should provide. This method is supposed to be used withPyArg_ParseTupleAndKeywords
and derivatives.Parameters are:
o
The input object to be converted into a C-shape
shape
A preallocated (double) address for storing the shape value, on successful conversion
Returns 0 if an error is detected, 1 on success.
-
int PyBlitzArray_TypenumConverter(PyObject *o, int *type_num)¶
Converts any compatible value into a Numpy integer type number. This method is supposed to be used with
PyArg_ParseTupleAndKeywords
and derivatives.Parameters are:
o
The input object to be converted into a type number
type_num
An address for storing the type number on successful conversion.
Returns 0 if an error is detected, 1 on success.
Other Utilities¶
-
const char *PyBlitzArray_TypenumAsString(int typenum)¶
Converts from numpy type_num to a string representation
-
PyObject *PyBlitzArray_Cast(PyBlitzArrayObject *o, int typenum)¶
Casts a given Blitz++ Array into another data type, returns a new reference. If the underlying Blitz++ Array is already of the given type, then just increments the reference counter and returns.
If a problem is detected (e.g. the impossibility to cast to the desired type), then this function will return
NULL
. You must check the return value and then take the appropriate action after calling this function.Note
Casting, as operated by this function, may incur in precision loss between the originating type and the destination type.
C++ API¶
The C++ API consists mostly of templated methods for manipulating the C++ type
blitz::Array<>
so as to convert PyObject*
’s from and to objects of that
type. To use the C++ API you must include the header file
<bob.blitz/cppapi.h>
and import_bob_blitz()
on your module, as
explained on the C-API section of this document.
Basic Properties and Checking¶
Construction and Destruction¶
-
template<typename T, int N>
PyObject *PyBlitzArrayCxx_NewFromConstArray(const blitz::Array<T, N> &a)¶ Builds a new read-only
PyBlitzArrayObject
from an existing Blitz++ array, without copying the data. Returns a new reference.
-
template<typename T, int N>
PyObject *PyBlitzArrayCxx_NewFromArray(blitz::Array<T, N> &a)¶ Builds a new writeable
PyBlitzArrayObject
from an existing Blitz++ array, without copying the data. Returns a new reference.
-
template<typename T, int N>
PyObject *PyBlitzArrayCxx_AsConstNumpy(const blitz::Array<T, N> &a)¶ Builds a new read-only
numpy.ndarray
object from the given Blitz++ array without copying the data. Returns a new reference.In fact, it actually calls two of the above mentioned functions
PyBlitzArrayCxx_NewFromConstArray()
andPyBlitzArray_NUMPY_WRAP()
:PyBlitzArray_NUMPY_WRAP(PyBlitzArrayCxx_NewFromConstArray(a));
-
template<typename T, int N>
PyObject *PyBlitzArrayCxx_AsNumpy(blitz::Array<T, N> &a)¶ Builds a new writeable
numpy.ndarray
object from the given Blitz++ array without copying the data. Returns a new reference.In fact, it actually calls two of the above mentioned functions
PyBlitzArrayCxx_NewFromArray()
andPyBlitzArray_NUMPY_WRAP()
:PyBlitzArray_NUMPY_WRAP(PyBlitzArrayCxx_NewFromArray(a));
Other Utilities¶
-
template<typename T, int N>
blitz::Array<T, N> *PyBlitzArrayCxx_AsBlitz(PyBlitzArrayObject *o)¶ Casts a
PyBlitzArrayObject
to a specificblitz::Array<>
type. Notice this is a brute-force cast. You are responsible for checking if that it is correct.
-
template<typename T, int N>
blitz::Array<T, N> *PyBlitzArrayCxx_AsBlitz(PyBlitzArrayObject *o, const char *name)¶ Casts a
PyBlitzArrayObject
to a specificblitz::Array<>
type after checking that the dimensions and the data type of the underlyingPyBlitzArrayObject
fits to the template parameters. If the check fails, an Python error is set, using the givenname
parameter as the name of the object that was passed to the python function, andNULL
is returned. Hence, please check the result of this function forNULL
:// ... PyBlitzArrayObject* data; if (!PyArg_ParseTupleAndKeywords(..., data, ...)) return NULL; // use safe reference counting auto _ = make_safe(data); // get the blitz array; returns NULL on failure blitz::Array<double,2>* array = PyBlitzArrayCxx_AsBlitz<double,2>(data, "data"); // check for NULL if (!array) // The error message has already been set, so we can simply return NULL return NULL; // ...
Note
If you need to check for several data types and/or dimensions, use the first version of this function and perform the checks by hand.
Note
This version of the function might be slightly slower than the first version.
-
template<typename T>
int PyBlitzArrayCxx_CToTypenum()¶ Converts from C/C++ type to ndarray type_num.
We cover only simple conversions (i.e., standard integers, floats and complex numbers only). If the input type is not convertible, an exception is set on the Python error stack. You must check
PyErr_Occurred()
after a call to this function to make sure things are OK and act accordingly. For example:int typenum = PyBlitzArrayCxx_CToTypenum<my_weird_type>(obj); if (PyErr_Occurred()) return 0; ///< propagate exception
-
template<typename T>
T PyBlitzArrayCxx_AsCScalar(PyObject *o)¶ Extraction API for simple types.
We cover only simple conversions (i.e., standard integers, floats and complex numbers only). If the input object is not convertible to the given type, an exception is set on the Python error stack. You must check
PyErr_Occurred()
after a call to this function to make sure things are OK and act accordingly. For example:auto z = extract<uint8_t>(obj); if (PyErr_Occurred()) return 0; ///< propagate exception
-
template<typename T>
PyBlitzArrayCxx_FromCScalar(T v)¶ Converts simple C types into numpy scalars
We cover only simple conversions (i.e., standard integers, floats and complex numbers only). If the input object is not convertible to the given type, an exception is set on the Python error stack and
0
(NULL
) is returned.