#!/usr/bin/env python
# vim: set fileencoding=utf-8 :
# Elie Khoury <Elie.Khoury@idiap.ch>
# Tue 9 Jun 23:10:43 CEST 2015
#
# Copyright (C) 2012-2013 Idiap Research Institute, Martigny, Switzerland
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, version 3 of the License.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
"""Cepstral Features for speaker recognition"""
import numpy
import bob.ap
from .. import utils
import logging
logger = logging.getLogger("bob.bio.spear")
from bob.bio.base.extractor import Extractor
class Cepstral(Extractor):
""" Extracts the Cepstral features """
def __init__(
self,
win_length_ms = 20,
win_shift_ms = 10,
n_filters = 24 ,
dct_norm = False,
f_min = 0.0,
f_max = 4000,
delta_win = 2,
mel_scale = True,
with_energy = True,
with_delta = True,
with_delta_delta = True,
n_ceps = 19, # 0-->18
pre_emphasis_coef = 0.95,
features_mask = numpy.arange(0,60),
# Normalization
normalize_flag = True,
**kwargs
):
# call base class constructor with its set of parameters
Extractor.__init__(
self,
win_length_ms = win_length_ms,
win_shift_ms = win_shift_ms,
n_filters = n_filters,
dct_norm = dct_norm,
f_min = f_min,
f_max = f_max,
delta_win = delta_win,
mel_scale = mel_scale,
with_energy = with_energy,
with_delta = with_delta,
with_delta_delta = with_delta_delta,
n_ceps = n_ceps,
pre_emphasis_coef = pre_emphasis_coef,
features_mask = features_mask,
normalize_flag = normalize_flag,
)
# copy parameters
self.win_length_ms = win_length_ms
self.win_shift_ms = win_shift_ms
self.n_filters = n_filters
self.dct_norm = dct_norm
self.f_min = f_min
self.f_max = f_max
self.delta_win = delta_win
self.mel_scale = mel_scale
self.with_energy = with_energy
self.with_delta = with_delta
self.with_delta_delta = with_delta_delta
self.n_ceps = n_ceps
self.pre_emphasis_coef = pre_emphasis_coef
self.features_mask = features_mask
self.normalize_flag = normalize_flag
[docs] def normalize_features(self, params):
#########################
## Initialisation part ##
#########################
normalized_vector = [ [ 0 for i in range(params.shape[1]) ] for j in range(params.shape[0]) ]
for index in range(params.shape[1]):
vector = numpy.array([row[index] for row in params])
n_samples = len(vector)
norm_vector = utils.normalize_std_array(vector)
for i in range(n_samples):
normalized_vector[i][index]=numpy.asscalar(norm_vector[i])
data = numpy.array(normalized_vector)
return data
def __call__(self, input_data):
"""Computes and returns normalized cepstral features for the given input data
input_data[0] --> sampling rate
input_data[1] --> sample data
input_data[2] --> VAD array (either 0 or 1)
"""
rate = input_data[0]
wavsample = input_data[1]
vad_labels = input_data[2]
# Set parameters
wl = self.win_length_ms
ws = self.win_shift_ms
nf = self.n_filters
nc = self.n_ceps
f_min = self.f_min
f_max = self.f_max
dw = self.delta_win
pre = self.pre_emphasis_coef
ceps = bob.ap.Ceps(rate, wl, ws, nf, nc, f_min, f_max, dw, pre)
ceps.dct_norm = self.dct_norm
ceps.mel_scale = self.mel_scale
ceps.with_energy = self.with_energy
ceps.with_delta = self.with_delta
ceps.with_delta_delta = self.with_delta_delta
cepstral_features = ceps(wavsample)
features_mask = self.features_mask
if vad_labels is not None: # don't apply VAD
filtered_features = numpy.ndarray(shape=((vad_labels == 1).sum(),len(features_mask)), dtype=numpy.float64)
i=0
cur_i=0
for row in cepstral_features:
if i < len(vad_labels):
if vad_labels[i]==1:
for k in range(len(features_mask)):
filtered_features[cur_i,k] = row[features_mask[k]]
cur_i = cur_i + 1
i = i+1
else:
if vad_labels[-1]==1:
if cur_i == cepstral_features.shape[0]:
for k in range(len(features_mask)):
filtered_features[cur_i,k] = row[features_mask[k]]
cur_i = cur_i + 1
i = i+1
else:
filtered_features = cepstral_features
if self.normalize_flag:
normalized_features = self.normalize_features(filtered_features)
else:
normalized_features = filtered_features
if normalized_features.shape[0] == 0:
logger.warn("No speech found for this utterance")
# But do not keep it empty!!! This avoids errors in next steps
normalized_features=numpy.array([numpy.zeros(len(features_mask))])
return normalized_features