NIST-SRE04-16 Dataset¶
Dataset Description¶
This is an aggregation of the NIST-SRE datasets from 2004 to 2016.
Related paper:
@inproceedings{nist16,
title={The 2016 NIST Speaker Recognition Evaluation},
author={ Sadjadi, Seyed Omid and Kheyrkhah, Timothee and Tong, Audrey and Greenberg, Craig and Reynolds, Douglas and Singer, Elliot and Mason, Lisa and Hernandez-Cordero, Jaime},
booktitle={Proc. of Interspeech 2017},
pages={1353--1357},
year={2017}
}
The core
protocol contains:
Identities |
Sample count |
||
train |
6213 |
71728 |
|
dev |
references |
80 |
120 |
probes |
5 |
1207 |
|
eval |
references |
802 |
1202 |
probes |
5 |
9294 |
GMM¶
To run the baseline, use the following commands:
bob bio pipeline train -d nist-sre04to16 -p gmm-default -o results/gmm_nist -l sge-demanding -n 512 --split-training --n-splits 8
bob bio pipeline simple -d nist-sre04to16 -p gmm-default -g dev -g eval -l sge -o results/gmm_nist
Then, to generate the scores, use:
bob bio metrics -e ./results/gmm_nist/scores-{dev,eval}.csv
Development |
Evaluation |
|
---|---|---|
Failure to Acquire |
0.0% |
0.0% |
False Match Rate |
22.2% (21395/96342) |
27.0% (2013356/7453619) |
False Non Match Rate |
22.0% (48/218) |
7.7% (13/169) |
False Accept Rate |
22.2% |
27.0% |
False Reject Rate |
22.0% |
7.7% |
Half Total Error Rate |
22.1% |
17.4% |
ISV¶
To run the baseline, use the following command:
bob bio pipeline simple -d nist-sre04to16 -p isv-nist -g dev -g eval -l sge -o results/isv_nist
Then, to generate the scores, use:
bob bio metrics -e ./results/isv_nist/scores-{dev,eval}.csv
Development |
Evaluation |
On 128[1] CPU nodes on the SGE Grid: TODO
Speechbrain ECAPA-TDNN¶
To run the baseline, use the following command:
bob bio pipeline simple -d nist-sre04to16 -p speechbrain-ecapa-voxceleb -g dev -g eval -l sge -o results/speechbrain_nist
Then, to generate the scores, use:
bob bio metrics -e ./results/speechbrain_mobio_male/scores-{dev,eval}.csv
Development |
Evaluation |
|
---|---|---|
Failure to Acquire |
0.0% |
0.0% |
False Match Rate |
12.9% (12434/96342) |
11.4% (852522/7453619) |
False Non Match Rate |
12.8% (28/218) |
23.7% (40/169) |
False Accept Rate |
12.9% |
11.4% |
False Reject Rate |
12.8% |
23.7% |
Half Total Error Rate |
12.9% |
17.6% |
On 70[1] CPU nodes on the SGE Grid: Ran in 55 minutes (no training).
Footnotes